Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In sheep, intrauterine growth restriction can be caused by heat stress in early to mid pregnancy. The effect is attributed to reduced placental development causing reduced fetal growth. Hormonal effects appear implicated in the reduced placental development. Although early reduction of placental development is not accompanied by concurrent reduction of fetal growth; it tends to limit fetal growth later in gestation. Normally, ovine placental mass increases until about day 70 of gestation, but high demand on the placenta for fetal growth occurs later. (For example, research results suggest that a normal average singleton Suffolk x Targhee sheep fetus has a mass of about 0.15 kg at day 70, and growth rates of about 31 g/day at day 80, 129 g/day at day 120 and 199 g/day at day 140 of gestation, reaching a mass of about 6.21 kg at day 140, a few days before parturition.)
In adolescent ewes (i.e. ewe hoggets), overfeeding during pregnancy can also cause intrauterine growth restriction, by altering nutrient partitioning between dam and conceptus. Fetal growth restriction in adolescent ewes overnourished during early to mid pregnancy is not avoided by switching to lower nutrient intake after day 90 of gestation; whereas such switching at day 50 does result in greater placental growth and enhanced pregnancy outcome. Practical implications include the importance of estimating a threshold for "overnutrition" in management of pregnant ewe hoggets. In a study of Romney and Coopworth ewe hoggets bred to Perendale rams, feeding to approximate a conceptus-free live mass gain of 0.15 kg/day (i.e. in addition to conceptus mass), commencing 13 days after the midpoint of a synchronized breeding period, yielded no reduction in lamb birth mass, where compared with feeding treatments yielding conceptus-free live mass gains of about 0 and 0.075 kg/day.
In both of the above models of IUGR in sheep, the absolute magnitude of uterine blood flow is reduced. Evidence of substantial reduction of placental glucose transport capacity has been observed in pregnant ewes that had been heat-stressed during placental development.
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
IUGR affects 3-10% of pregnancies. 20% of stillborn infants have IUGR. Perinatal mortality rates are 4-8 times higher for infants with IUGR, and morbidity is present in 50% of surviving infants.
According to the theory of thrifty phenotype, intrauterine growth restriction triggers epigenetic responses in the fetus that are otherwise activated in times of chronic food shortage. If the offspring actually develops in an environment rich in food it may be more prone to metabolic disorders, such as obesity and type II diabetes.
The cause is not known but is often associated with some:
- fetal chromosomal anomalies
- intra uterine infections
- drugs; PG inhibitors, ACE inhibitors
- renal agenesis or obstruction of the urinary tract of the fetus preventing micturition such as posterior urethral valves in males
- intrauterine growth restriction (IUGR) associated with placental insufficiency
- "amnion nodosum"; failure of secretion by the cells of the amnion covering the placenta
- postmaturity (dysmaturity)
Cannabis in pregnancy is the subject of various scientific studies, usually regarding whether it has effects on the child later in life.
Effects found by Fergusson, D. M., Horwood, L. J., & Northstone, K. (2002) where that cannabis had a negative effect on babies. They were found to weigh significantly less, as well having shorter birth lengths, and had smaller head circumferences than babies who were not exposed to prenatal cannabis. Marijuana use has been shown to affect global motion perception by considerably increasing it, unlike alcohol that significantly decreases it.
In twin pregnancies, it is very common for one or both babies to be in the breech position. Most often twin babies do not have the chance to turn around because they are born prematurely. If both babies are in the breech position and the mother has gone into labour early, a cesarean section may be the best option. About 30-40% of twin pregnancies result in only one baby being in the breech position. If this is the case, the babies can be born vaginally. After the first baby who is not in the breech position is delivered, the baby who is presented in the breech position may turn itself around, if this does not happen another procedure may performed called the breech extraction. The breech extraction is the procedure that involves the obstetrician grabbing the second twin's feet and pulling him/her into the birth canal. This will help with delivering the second twin vaginally. However, if the second twin is larger than the first, complications with delivering the second twin vaginally may arise and a cesarean section should be performed. At times, the first twin (the twin closest to the birth canal) can be in the breech position with the second twin being in the cephalic position (vertical). When this occurs, risks of complications are higher than normal. In particular, a serious complication known as Locked twins. This is when both babies interlock their chins during labour. When this happens a cesarean section should be performed immediately.
Complications may include cord compression, musculoskeletal abnormalities such as facial distortion and clubfoot, pulmonary hypoplasia and intrauterine growth restriction. Amnion nodosum is frequently also present (nodules on the fetal surface of the amnion).
The use of oligohydramnios as a predictor of gestational complications is controversial.
Potter syndrome is a condition caused by oligohydramnios. Affected fetuses develop pulmonary hypoplasia, limb deformities, and characteristic facies. Bilateral agenesis of the fetal kidneys is the most common cause due to the lack of fetal urine.
Fetal entities: First twin 17-30%; Second twin 28-39%; Stillborn 26%; Prader-Willi syndrome 50%, Werdnig-Hoffman syndrome 10%; Smith-Lemli-Opitz syndrome 40%; Fetal alcohol syndrome 40%; Potter anomaly 36%; Zellweger syndrome 27%; Myotonic dystrophy 21%, 13 trisomy syndrome 12%; 18 trisomy syndrome 43%; 21 trisomy syndrome 5%; de Lange syndrome 10%; Anencephalus 6-18%, Spina bifida 20-30%; Congenital Hydrocephalus 24-37%; Osteogenesis imperfecta 33.3%; Amyoplasia 33.3%; Achondrogenesis 33.3%; Amelia 50%; Craniosynostosis 8%; Sacral agenesis 30.4%; Arthrogriposis multiplex congenita 33.3; Congenital dislocation of the hip 33.3%; Hereditary sensory neuropathy type III 25%; Centronuclear myoptathy 16.7%; Multiple pituitary hormone deficiency 50%; Isolated pituitary hormone deficiency 20%; Ectopic posterior pituitary gland 33.3%; Congenital bilateral perisilvian syndrome 33.3; Symmetric fetal growth restriction 40%; Asymmetric fetal growth restriction 40%; Nonimmune hydrops fetalis 15%; Atresio ani 18.2%; Microcephalus 15.4%; Omphalocele 12.5%; Prematurity 40%
Placental and amniotic fluid entities: Amniotic sheet perpendicular to the placenta 50%; Cornual-fundal implantation of the placenta 30%; Placenta previa 12.5%; Oligohydramnios 17%; Polyhydramnios 15.8%; MATERNAL ENTITIES: Uterus arcuatus 22.6%; Uterus unicornuatus 33.3%; Uterus bicornuatus 34.8%; Uterus didelphys 30-41%; Uterus septus 45.8%; Leimyoma uteri 9-20%; Spinal cord injury 10%; Carriers of Duchenne muscular dystrophy 17%
Combination of two medical entities: First twin in uterus with two bodies 14.29%; Second twin in uterus with two bodies 18.52%.
Also, women with previous Caesarean deliveries have a risk of breech presentation at term twice that of women with previous vaginal deliveries.
The highest possible probability of breech presentation of 50% indicates that breech presentation is a consequence of random filling of the intrauterine space, with the same probability of breech and cephalic presentation in a longitudinally elongated uterus.
Known risk factors for pre-eclampsia include:
- Having never previously given birth
- Diabetes mellitus
- Kidney disease
- Chronic hypertension
- Prior history of pre-eclampsia
- Family history of pre-eclampsia
- Advanced maternal age (>35 years)
- Obesity
- Antiphospholipid antibody syndrome
- Multiple gestation
- Having donated a kidney.
- Having sub-clinical hypothyroidism or thyroid antibodies
- Placental abnormalities such as placental ischemia.
The non-immune form of hydrops fetalis has many causes including:
- Iron deficiency anemia
- Paroxysmal supraventricular tachycardia resulting in heart failure
- Deficiency of the enzyme beta-glucuronidase. This enzyme deficiency is the cause of the lysosomal storage disease called mucopolysaccharidosis type VII.
- Congenital disorders of glycosylation
- Parvovirus B19 (fifth disease) infection of the pregnant woman
- Cytomegalovirus in mother
- Congenital pulmonary airway malformation
- Maternal syphilis and maternal diabetes mellitus
- Alpha-thalassemia can also cause hydrops fetalis when all four of the genetic loci for α globin are deleted or affected by mutation. This is termed Hb Barts (consists of y-4 tetramers).
- Uncommonly, Niemann-Pick disease Type C (NPC) and Gaucher disease type 2 can present with hydrops fetalis.
- Turner Syndrome
- Tumors, the most common type of fetal tumor being teratoma, particularly a sacrococcygeal teratoma.
- Twin-twin transfusion syndrome in pregnancies in which twins share a single placenta (hydrops affects the recipient twin)
- Maternal hyperthyroidism
- Fetal cardiac defects and skeletal defects
- Noonan syndrome
- Mirror syndrome, in which fetal and placental hydrops develops in association with maternal preeclampsia, edema and hypertension
Most pregnancies that are diagnosed with confined placental mosaicism continue to term with no complications and the children develop normally.
However, some pregnancies with CPM experience prenatal or perinatal complications. The pregnancy loss rate in pregnancies with confined placental mosaicism, diagnosed by chorionic villus sampling, is higher than among pregnancies without placental mosaicism. It may be that sometimes the presence of significant numbers of abnormal cells in the placenta interferes with proper placental function. An impaired placenta cannot support the pregnancy and this may lead to the loss of a chromosomally normal baby. On the other hand, an apparently normal diploid fetus may experience problems with growth or development due to the effects of uniparental disomy (UPD). Intrauterine growth restriction (IUGR) has been reported in a number of CPM cases. In follow-up studies adequate postnatal catch-up growth has been demonstrated, which may suggest a placental cause of the IUGR.
When predicting the likely effects (if any) of CPM detected in the first trimester, several potentially interactive factors may be playing a role, including:
- "Origin of error:" Somatic errors are associated with lower levels of trisomy in the placenta and are expected usually to involve only one cell line (i.e.: the trophoblast cells or the villus stroma cells). Somatic errors are thus less likely than meiotic errors to be associated with either ultrasound abnormalities, growth problems or detectable levels of trisomy in small samples of prenatal CVS. Currently, there is no evidence that somatic errors, which lead to confined placental trisomy, are of any clinical consequence. Errors of meiotic origin are correlated with higher levels of trisomy in placental tissues and may be associated with adverse pregnancy outcome. The cell type in which the abnormality is seen is also an important factor in determining the risk of fetal involvement. The villus stroma or mesenchymal core is more likely than the cytotrophoblast to be reflective of the fetal genotype.
- "Level of mosaicism:" There is a correlation between a high number of aneuploid cells detected at CVS with poor pregnancy progress. This includes an association between high levels of abnormal cells in placental tissue and concerns with the growth of the baby. However, it is not accurate to use these associations to try to predict pregnancy outcome based on the percent of trisomic cells in a first trimester CVS result.
- "Specific chromosomes:" The influence of CPM on fetal growth is chromosome specific. Certain chromosomes carry imprinted genes involved in growth or placental function, which may contribute to impaired pregnancy progress when CPM is detected. Different chromosomes are observed at different frequencies depending on the type of CPM observed. The pregnancy outcome is strongly chromosome specific. The most frequently seen trisomic cells in confined placental mosaicism involve chromosomes 2, 3, 7, 8 and 16. The next frequently involved are 9, 13, 15, 18, 20 and 22. It has been observed that CPM involving the sex chromosomes usually has no adverse effects on fetal development. The common autosomal trisomies (21, 18, 13) made up a smaller number of cases of mosaicism detected on CVS, but were more often confirmed in fetal tissue (19%). On the other hand, the uncommon autosomal trisomies accounted for a greater number of placental mosaicism cases, but were less often confirmed in fetal tissue (3.2%). When CPM is detected on CVS involving certain chromosomes which are known or suspected to carry imprinted genes, molecular investigations should be performed to exclude fetal UPD. We will explore chromosome specific cases in the chromosome specific section.
- "Type of chromosome abnormality:" The factor that had the highest predictive value as to whether the fetus was affected or not was the type of chromosome abnormality. Marker chromosomes were more often confirmed in the fetus than trisomies. For example, of 28 cases of mosaic polyploidy detected on CVS, fetal mosaicism was confirmed in only one case. This is compared to marker chromosomes detected on CVS, in which mosaicism was confirmed in 1/4 of the fetuses.
PROM occurring before 37 weeks (PPROM) is one of the leading causes of preterm birth. 30-35% of all preterm births are caused by PPROM. This puts the fetus at risk for the many complications associated with prematurity such as respiratory distress, brain bleeds, infection, necrotizing enterocolitis (death of the fetal bowels), brain injury, muscle dysfunction, and death. Prematurity from any cause leads to 75% of perinatal mortality and about 50% of all long-term morbidity. PROM is responsible for 20% of all fetal deaths between 24 and 34 weeks gestation.
There are many causes of "fetal distress" including:
- Breathing problems
- Abnormal position and presentation of the fetus
- Multiple births
- Shoulder dystocia
- Umbilical cord prolapse
- Nuchal cord
- Placental abruption
- Premature closure of the fetal ductus arteriosus
- Uterine rupture
- Intrahepatic cholestasis of pregnancy, a liver disorder during pregnancy
Certain maternal health issues can cause birth injuries. For example, gestational diabetes can cause premature birth, macrosomia, or stillbirth.
Maternal infection may be transmitted to the fetus; this is called a vertically transmitted infection. The fetus has a weak immune system, so infections that are relatively minor in adults can be very serious in a developing fetus. In addition, some studies suggest that maternal infections increase the risk of neurodevelopmental disorders, including schizophrenia, in the child.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
The cause of premature rupture of membranes (PROM) is not clearly understood, but the following are risk factors that have been shown to increase the chance of it happening. In many cases, however, no risk factor is identified.
- Infections: urinary tract infection, sexually transmitted diseases, lower genital infections (ex: Bacterial Vaginosis), infections within the amniotic sac membranes
- Cigarette smoking during pregnancy
- Illicit drug use during pregnancy
- Having had PROM or preterm delivery in previous pregnancies
- Hydramnios: too much amniotic fluid
- Multiple gestation: being pregnant with two or more fetuses at one time
- Having had episodes of bleeding anytime during the pregnancy
- Invasive procedures (ex: amniocentesis)
- Nutritional deficits
- Cervical insufficiency: having a short or prematurely dilated cervix during pregnancy
- Low socioeconomic status
- Being underweight
Genetic counseling is often recommended to provide more information about fetal CPCs, to answer questions and concerns, and to outline available options such as amniocentesis or a blood test from the mother. There is a possible association between ultrasound-detected fetal CPCs and Trisomy 18. It is not correlated to the presence of Trisomy 21 (Down syndrome).
Generally the risks are very low if there are no other risk factors. If no additional abnormalities are detected by a thorough "level II" ultrasound, the likelihood the fetus has trisomy 18 is very low.
A meta-analysis of 8 studies between 1990 and 2000 with choroid plexus cysts that were identified in second-trimester (an incidence of 1.2%). The incidence of the cysts in women younger than 35 was 1% (n=1017). The study found no cases of trisomy 18 in fetuses with cysts whose mother was younger than 35. The study concluded that "there is no evidence that detection of isolated choroid plexus cyst in women who are <35 years of age increases the risk of trisomy 18".
Other factors which may have a bearing on the baby's chances of developing chromosome problems include:
- mother's age at the expected date of delivery
- the results of serum screening; XAFP triple testing or quad screening
- evidence of other "fetal findings" seen at the time of the ultrasound that may suggest a chromosome problem
Gestational hypertension is one of the most common disorders seen in human pregnancies. Though relatively benign on its own, in roughly half of the cases of gestational hypertension the disorder progresses into preeclampsia, a dangerous condition that can prove fatal to expectant mothers. However, gestational hypertension is a condition that is fairly rare to see in other animals. For years, it has been the belief of the scientific community that gestational hypertension and preeclampsia were relatively unique to humans, although there has been some recent evidence that other primates can also suffer from similar conditions, albeit due to different underlying mechanisms. The underlying cause of gestational hypertension in humans is commonly believed to be an improperly implanted placenta. Humans have evolved to have a very invasive placenta to facilitate better oxygen transfer from the mother to the fetus, to support the growth of its large brain.
Instead of referring to "fetal distress" current recommendations hold to look for more specific signs and symptoms, assess them, and take the appropriate steps to remedy the situationthrough the implementation of intrauterine resuscitation. Traditionally the diagnosis of "fetal distress" led the obstetrician to recommend rapid delivery by instrumental delivery or by caesarean section if vaginal delivery is not advised.
Fetal mortality refers to stillbirths or fetal death. It encompasses any death of a fetus after 20 weeks of gestation or 500 gm. In some definitions of the PNM early fetal mortality (week 20-27 gestation) is not included, and the PNM may only include late fetal death and neonatal death. Fetal death can also be divided into death prior to labor, antenatal (antepartum) death, and death during labor, intranatal (intrapartum) death.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
Fetal microchimerism could have an implication on maternal health. Isolating cells in cultures can alter the properties of the stem cells, but in pregnancy the effects of fetal stem cells can be investigated without in vitro cultures. Once characterized and isolated, fetal cells that are able to cross the blood brain barrier could impact certain procedures. For example, isolating stem cells can be accomplished through taking them from sources like the umbilical cord. These fetal stem cells can be used in intravenous infusion to repair the brain tissue. Hormonal changes in pregnancy alter neurogenesis, which could create favorable environments for fetal cells to respond to injury.
The true function on fetal cells in mothers is not fully known, however, there have been reports of positive and negative health effects. The sharing of genes between the fetus and mother may lead to benefits. Due to not all genes being shared, health complications may arise as a result of resource allocation. During pregnancy, fetal cells are able to manipulate the maternal system to draw resources from the placenta, while the maternal system tries to limit it.
In most cases Ballantyne syndrome causes fetal or neonatal death and in contrast, maternal involvement is limited at the most to preeclampsia.
Since locked twins are often diagnosed in the late stages of delivery, it is often too late to intervene to save the life of the first twin and thus there is a high rate of stillbirth, estimated to be over 50%.