Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hip fractures are seen globally and are a serious concern at the individual and population level. By 2050 it is estimated that there will be 6 million cases of hip fractures worldwide. One study published in 2001 found that in the US alone, 310,000 individuals were hospitalized due to hip fractures, which can account for 30% of Americans who were hospitalized that year. Another study found that in 2011, femur neck fractures were among the most expensive conditions seen in US hospitals, with an aggregated cost of nearly $4.9 billion for 316,000 inpatient hospitalizations. Rates of hip fractures is declining in the United States, possibly due to increased use of bisphosphonates and risk management. Falling, poor vision, weight and height are all seen as risk factors. Falling is one of the most common risk factors for hip fractures. Approximately 90% of hip fractures are attributed to falls from standing height.
Given the high morbidity and mortality associated with hip fractures and the cost to the health system, in England and Wales, the National Hip Fracture Database is a mandatory nationwide audit of care and treatment of all hip fractures.
Among those affected over the age of 65, 40% are transferred directly to long-term care facilities, long-term rehabilitation facilities, or nursing homes; most of those affected require some sort of living assistance from family or home-care providers. 50% permanently require walkers, canes, or crutches for mobility; all require some sort of mobility assistance throughout the healing process.
Among those affected over the age of 50, approximately 25% die within the next year due to complications such as blood clots (deep venous thrombosis, pulmonary embolism), infections, and pneumonia.
Patients with hip fractures are at high risk for future fractures including hip, wrist, shoulder, and spine. After treatment of the acute fracture, the risk of future fractures should be addressed. Currently, only 1 in 4 patients after a hip fracture receives treatment and work up for osteoporosis, the underlying cause of most of the fractures. Current treatment standards include the starting of a bisphosphonate to reduce future fracture risk by up to 50%.
Femoral shaft fractures occur in a bimodal distribution, whereby they are most commonly seen in males age 15-24 (due to high energy trauma) and females aged 75 or older (pathologic fractures due to osteoporosis, low-energy falls).
In the US, the annual incidence of stress fractures in athletes and military recruits ranges from 5% to 30%, depending on the sport and other risk factors. Women and highly active individuals are also at a higher risk. The incidence probably also increases with age due to age-related reductions in bone mass density (BMD). Children may also be at risk because their bones have yet to reach full density and strength. The female athlete triad also can put women at risk as disordered eating and osteoporosis can cause the bones to be severely weakened.
Scapular fracture is present in about 1% of cases of blunt trauma and 3–5% of shoulder injuries. An estimated 0.4–1% of bone fractures are scapular fractures.
The injury is associated with other injuries 80–90% of the time. Scapular fracture is associated with pulmonary contusion more than 50% of the time. Thus when the scapula is fractured, other injuries such as abdominal and chest trauma are automatically suspected. People with scapular fractures often also have injuries of the ribs, lung, and shoulder. Pneumothorax (an accumulation of air in the space outside the lung), clavicle fractures, and injuries to the blood vessels are among the most commonly associated injuries. The forces involved in scapular fracture can also cause tracheobronchial rupture, a tear in the airways. Fractures that occur in the scapular body are the type most likely to be accompanied by other injuries; other bony and soft tissue injuries accompany these fractures 80–95% of the time. Associated injuries can be serious and potentially deadly, and usually it is the associated injuries, rather than the scapular fracture, that have the greatest effect on the outcome. Scapular fractures can also occur by themselves; when they do, the death rate (mortality) is not significantly increased.
The mean age of people affected is 35–45 years.
Neck trauma, commonly by strangulation, athletic activities, and car accidents, is the cause of a hyoid bone fracture. Other causes include violent vomiting, gunshot wounds, and hanging.
These fractures can take at least 4–6 months to heal. Since femoral shaft fractures are associated with violent trauma, there are many adverse outcomes, including fat embolism, acute respiratory distress syndrome (ARDS), multisystem organ failure, and shock associated with severe blood loss. Open fractures can result in infection, osteomyelitis, and sepsis.
In general, SCFE is caused by increased force applied across the epiphysis, or a decrease in the resistance within the physis to shearing. No single cause accounts for SCFEs, as several factors play a role in the development of a SCFE, particularly mechanical and endocrine (hormone-related) factors. Mechanical risk factors include obesity, coxa profunda, femoral or acetabular retroversion. Obesity is the most significant risk factor. In 65 percent of cases of SCFE, the person is over the 95th percentile for weight. Common misconception is heredity. Majority of cause is due to being overweight. Endocrine diseases also contribute, such as hypothyroidism, hypopituitarism, and renal osteodystrophy.
Hyoid bones fractures represent 0.002% of all fractures; they are rare because the hyoid bone is well-protected by its location in the neck behind the mandible and in front of the cervical spine, as well as its mobility. 91.3% of hyoid bone fractures occur in men.
In most cases, patients are discharged from an emergency department with pain medicine and a cast or sling. These fractures are typically minor and heal naturally over the course of a few weeks. Fractures of the proximal region, especially among elderly patients, may limit future shoulder activity. Severe fractures are usually resolved with surgical intervention, followed by a period of healing using a cast or sling. Severe fractures often cause long-term loss of physical ability. Complications in the recovery process of severe fractures include osteonecrosis, malunion or nonunion of the fracture, stiffness, and rotator cuff dysfunction, which require additional intervention in order for the patient to fully recover.
Smokers generally have lower bone density than non-smokers, so have a much higher risk of fractures. There also is evidence that smoking delays bone healing.
Jefferson fracture is often caused by an impact or load on the back of the head, and are frequently associated with diving into shallow water, impact against the roof of a vehicle and falls, and in children may occur due to falls from playground equipment. Less frequently, strong rotation of the head may also result in Jefferson fractures.
Jefferson fractures are extremely rare in children, but recovery is usually complete without surgery.
Humerus fractures are among the most common of fractures. Proximal fractures make up 5% of all fractures and 25% of humerus fractures, middle fractures about 60% of humerus fractures (12% of all fractures), and distal fractures the remainder. Among proximal fractures, 80% are one-part, 10% are two-part, and the remaining 10% are three- and four-part. The most common location of proximal fractures is at the surgical neck of the humerus. Incidence of proximal fractures increases with age, with about 75% of cases occurring among people over the age of 60. In this age group, about three times as many women than men experience a proximal fracture. Middle fractures are also common among the elderly, but they frequently occur among physically active young adult men who experience physical trauma to the humerus. Distal fractures are rare among adults, occurring primarily in children who experience physical trauma to the elbow region.
In children, whose bones are still developing, there are risks of either a growth plate injury or a greenstick fracture.
- A greenstick fracture occurs due to mechanical failure on the tension side. That is, since the bone is not so brittle as it would be in an adult, it does not completely fracture, but rather exhibits bowing without complete disruption of the bone's cortex in the surface opposite the applied force.
- Growth plate injuries, as in Salter-Harris fractures, require careful treatment and accurate reduction to make sure that the bone continues to grow normally.
- Plastic deformation of the bone, in which the bone permanently bends, but does not break, also is possible in children. These injuries may require an osteotomy (bone cut) to realign the bone if it is fixed and cannot be realigned by closed methods.
- Certain fractures mainly occur in children, including fracture of the clavicle and supracondylar fracture of the humerus.
Considerable force is needed to cause a cervical fracture. Vehicle collisions and falls are common causes. A severe, sudden twist to the neck or a severe blow to the head or neck area can cause a cervical fracture.
Sports that involve violent physical contact carry a risk of cervical fracture, including American football, Goalkeeper (association football), ice hockey, rugby, and wrestling. Spearing an opponent in football or rugby, for instance, can cause a broken neck. Cervical fractures may also be seen in some non-contact sports, such as gymnastics, skiing, diving, surfing, powerlifting, equestrianism, mountain biking, and motor racing.
Certain penetrating neck injuries can also cause cervical fracture which can also cause internal bleeding among other complications.
Hanging also incurs a cervical fracture.
Colles fractures occur in all age groups, although certain patterns follow an age distribution.
- In the elderly, because of the weaker cortex, the fracture is more often extra-articular.
- Younger individuals tend to require a higher energy force to cause the fracture and tend to have more complex intra-articular fractures. In children with open epiphyses, an equivalent fracture is the "epiphyseal slip", as can be seen in other joints, such as a slipped capital femoral epiphysis in the hip. This is a Salter I or II fracture with the deforming forces directed through the weaker epiphyseal plate.
- More common in women because of post-menopausal osteoporosis.
Falling and colliding with other people in a contact sport can also cause this fracture. Falling causes the weight of the body to force hyperextension. In full-contact sports such as American football and Rugby, diving for the ball can lead a player to land on his head, forcing the neck into hyperextension. The further piling of players on top of an injured player adds more weight and can lead to further occurrences of this fracture.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
The healing time for a routine mandible fractures is 4–6 weeks whether MMF or rigid internal fixation (RIF) is used. For comparable fractures, patients who received MMF will lose more weight and take longer to regain mouth opening, whereas, those who receive RIF have higher infection rates.
The most common long-term complications are loss of sensation in the mandibular nerve, malocclusion and loss of teeth in the line of fracture. The more complicated the fracture (infection, comminution, displacement) the higher the risk of fracture.
Condylar fractures have higher rates of malocclusion which in turn are dependent on the degree of displacement and/or dislocation. When the fracture is intracapsular there is a higher rate of late-term osteoarthritis and the potential for ankylosis although the later is a rare complication as long as mobilization is early. Pediatric condylar fractures have higher rates of ankylosis and the potential for growth disturbance.
Rarely, mandibular fracture can lead to Frey's syndrome.
Acute injury to the internal carotid artery (carotid dissection, occlusion, pseudoaneurysm formation) may be asymptomatic or result in life-threatening bleeding. They are almost exclusively observed when the carotid canal is fractured, although only a minority of carotid canal fractures result in vascular injury. Involvement of the petrous segment of the carotid canal is associated with a relatively high incidence of carotid injury.
Avascular necrosis usually affects people between 30 and 50 years of age; about 10,000 to 20,000 people develop avascular necrosis of the head of the femur in the US each year. When it occurs in children at the femoral head, it is known as Legg-Calvé-Perthes syndrome.
A fracture in conjunction with an overlying laceration that tears the epidermis and the meninges—or runs through the paranasal sinuses and the middle ear structures, putting the outside environment in contact with the cranial cavity—is a compound fracture.
Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.
The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.
Sports involving repetitive or forceful hyperextension of the spine, especially when combined with rotation are the main mechanism of injury for spondylolysis. The stress fracture of the pars interarticularis occurs on the side opposite to activity. For instance, for a right-handed player, the fracture occurs on the left side of the vertebrae.
Spondylolysis has a higher occurrence in the following activities:
- Baseball
- Tennis
- Diving
- Cheerleading
- Gymnastics
- Football
- Soccer
- Wrestling
- Weightlifting
- Roller Derby
- Cricket
- Pole Vault
- Rugby
- Volleyball
- Gym
- Ultimate Frisbee (especially during impact from laying out)
Although this condition can be caused by repetitive trauma to the lumbar spine in strenuous sports, other risk factors can also predispose individuals to spondylolsis. Males are more commonly affected by spondylolysis than females. In one study looking at youth athletes, it was found that the mean age of individuals with spondylolisthesis was 20 years of age. Spondylolysis also runs in families suggesting a hereditary component such as a predisposition to weaker vertebrae.
Some studies suggest a hormonal link. Specifically, the hormone relaxin has been indicated.
A genetic factor is indicated since the trait runs in families and there is an increased occurrence in some ethnic populations (e.g., Native Americans, Lapps / Sami people). A locus has been described on chromosome 13. Beukes familial dysplasia, on the other hand, was found to map to an 11-cM region on chromosome 4q35, with nonpenetrant carriers not affected.
The cause of spondylolysis remains unknown, however many factors are thought to contribute to its development. The condition is present in up to 6% of the population, majority of which usually present asymptomatically. Research supports that there are hereditary and acquired risk factors that can make one more susceptible to the defect. The disorder is generally more prevalent in males compared to females, and tends to occur earlier in males due to their involvement in more strenuous activities at a younger age. In a young athlete, the spine is still growing which means there are many ossification centers, leaving points of weakness in the spine. This leaves young athletes at increased risk, particularly when involved in repetitive hyperextension and rotation across the lumbar spine. Spondylolysis is a common cause of low back pain in preadolescents and adolescent athletes, as it accounts for about 50% of all low back pain. It is believed that both repetitive trauma and an inherent genetic weakness can make an individual more susceptible to spondylolysis.