Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for thromboembolism, the major cause of arterial embolism, include disturbed blood flow (such as in atrial fibrillation and mitral stenosis), injury or damage to an artery wall, and hypercoagulability (such as increased platelet count). Mitral stenosis poses a high risk of forming emboli which may travel to the brain and cause stroke. Endocarditis increases the risk for thromboembolism, by a mixture of the factors above.
Atherosclerosis in the aorta and other large blood vessels is a common risk factor, both for thromboembolism and cholesterol embolism. The legs and feet are major impact sites for these types. Thus, risk factors for atherosclerosis are risk factors for arterial embolisation as well:
- advanced age
- cigarette smoking
- hypertension (high blood pressure)
- obesity
- hyperlipidemia, e.g. hypercholesterolemia, hypertriglyceridemia, elevated lipoprotein (a) or apolipoprotein B, or decreased levels of HDL cholesterol)
- diabetes mellitus
- Sedentary lifestyle
- stress
Other important risk factors for arterial embolism include:
- recent surgery (both for thromboembolism and air embolism)
- previous stroke or cardiovascular disease
- a history of long-term intravenous therapy (for air embolism)
- Bone fracture (for fat embolism)
A septal defect of the heart makes it possible for paradoxical embolization, which happens when a clot in a vein enters the right side of the heart and passes through a hole into the left side. The clot can then move to an artery and cause arterial embolisation.
About 90% of emboli are from proximal leg deep vein thromboses (DVTs) or pelvic vein thromboses. DVTs are at risk for dislodging and migrating to the lung circulation. The conditions are generally regarded as a continuum termed "venous thromboembolism" (VTE).
The development of thrombosis is classically due to a group of causes named Virchow's triad (alterations in blood flow, factors in the vessel wall and factors affecting the properties of the blood). Often, more than one risk factor is present.
- "Alterations in blood flow": immobilization (after surgery), injury, pregnancy (also procoagulant), obesity (also procoagulant), cancer (also procoagulant)
- "Factors in the vessel wall": surgery, catheterizations causing direct injury ("endothelial injury")
- "Factors affecting the properties of the blood" (procoagulant state):
- Estrogen-containing hormonal contraception
- Genetic thrombophilia (factor V Leiden, prothrombin mutation G20210A, protein C deficiency, protein S deficiency, antithrombin deficiency, hyperhomocysteinemia and plasminogen/fibrinolysis disorders)
- Acquired thrombophilia (antiphospholipid syndrome, nephrotic syndrome, paroxysmal nocturnal hemoglobinuria)
- Cancer (due to secretion of pro-coagulants)
Fat emboli occur in almost 90% of all people with severe injuries to bones, although only 10% of these are symptomatic. The risk of fat embolism syndrome is thought to be reduced by early immobilization of fractures and especially by early operative correction. There is also some evidence that steroid prophylaxis of high-risk individuals reduces the incidence. The mortality rate of fat-embolism syndrome is approximately 10–20%.
Fat emboli can be either traumatic (resulting from fracture of long bones, accidents, or trauma to soft tissue) or non-traumatic (resulting from burns or fatty liver).
In the United States, approximately 550,000 people die each year from heart-related arterial embolism and thrombosis. Approximately 250,000 of these individuals are female, and approximately 100,000 of all these deaths are considered premature, that is, prior to the age of average life expectancy.
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
Trauma to the lung can also cause an air embolism. This may happen after a patient is placed on a ventilator and air is forced into an injured vein or artery, causing sudden death. Breath-holding while ascending from scuba diving may also force lung air into pulmonary arteries or veins in a similar manner, due to the pressure difference.
Less than 5 to 10% of symptomatic PEs are fatal within the first hour of symptoms.
There are several markers used for risk stratification and these are also independent predictors of adverse outcome. These include hypotension, cardiogenic shock, syncope, evidence of right heart dysfunction, and elevated cardiac enzymes. Some ECG changes including S1Q3T3 also correlate with worse short-term prognosis. There have been other patient-related factors such as COPD and chronic heart failure thought to also play a role in prognosis.
Prognosis depends on the amount of lung that is affected and on the co-existence of other medical conditions; chronic embolisation to the lung can lead to pulmonary hypertension. After a massive PE, the embolus must be resolved somehow if the patient is to survive. In thrombotic PE, the blood clot may be broken down by fibrinolysis, or it may be organized and recanalized so that a new channel forms through the clot. Blood flow is restored most rapidly in the first day or two after a PE. Improvement slows thereafter and some deficits may be permanent. There is controversy over whether small subsegmental PEs need treatment at all and some evidence exists that patients with subsegmental PEs may do well without treatment.
Once anticoagulation is stopped, the risk of a fatal pulmonary embolism is 0.5% per year.
Mortality from untreated PEs was said to be 26%. This figure comes from a trial published in 1960 by Barrit and Jordan, which compared anticoagulation against placebo for the management of PE. Barritt and Jordan performed their study in the Bristol Royal Infirmary in 1957. This study is the only placebo controlled trial ever to examine the place of anticoagulants in the treatment of PE, the results of which were so convincing that the trial has never been repeated as to do so would be considered unethical. That said, the reported mortality rate of 26% in the placebo group is probably an overstatement, given that the technology of the day may have detected only severe PEs.
In terms of the epidemiology of air embolisms one finds that the "intra-operative" period to have the highest incidence. For example, VAE in neurological cases ranges up to 80%, and OBGYN surgeries incidence can climb to 97% for VAE (vascular air embolism). In divers the incidence rate is 7/100,000 per dive.
The pathogenesis of fat embolus occurs in long bone fractures, though intramedullary procedures also show some incidence (0.8%). In the event of an accident where bone fractures occur , a large movement of fat droplets occurs in the human body, this can elevate the vascular resistance and therefore cause, potentially, right ventricular failure to happen. Possible mechanisms are:
1. "Mechanical". Mobilisation of fluid fat following trauma to bone and soft tissue.
2. "Biochemical theory". Indicates that inflammation due to trauma, in turn cause the bone marrow to liberate fatty acids, increasing levels of these, as well as inflammatory mediators, damage capillary beds.
Thrombosis prevention is initiated with assessing the risk for its development. Some people have a higher risk of developing thrombosis and its possible development into thromboembolism. Some of these risk factors are related to inflammation. "Virchow's triad" has been suggested to describe the three factors necessary for the formation of thrombosis: stasis of blood, vessel wall injury, and altered blood coagulation. Some risk factors predispose for venous thrombosis while others increase the risk of arterial thrombosis.
There are different types of embolism, some of which are listed below.
Evidence supports the use of heparin in people following surgery who have a high risk of thrombosis to reduce the risk of DVTs; however, the effect on PEs or overall mortality is not known. In hospitalized non-surgical patients, mortality decreased but not statistically significant. It does not appear however to decrease the rate of symptomatic DVTs. Using both heparin and compression stockings appears better than either one alone in reducing the rate of DVT.
In hospitalized people who have had a stroke and not had surgery, mechanical measures (compression stockings) resulted in skin damage and no clinical improvement. Data on the effectiveness of compression stockings among hospitalized non-surgical patients without stroke is scarce.
The American College of Physicians (ACP) gave three strong recommendations with moderate quality evidence on VTE prevention in non-surgical patients: that hospitalized patients be assessed for their risk of thromboembolism and bleeding before prophylaxis (prevention); that heparin or a related drug is used if potential benefits are thought to outweigh potential harms; and that graduated compression stockings not be used. As an ACP policy implication, the guideline stated a lack of support for any performance measures that incentivize physicians to apply universal prophylaxis without regard to the risks. Goldhaber recommends that people should be assessed at their hospital discharge for persistent high-risk of venous thrombosis, and that people who adopt a heart-healthy lifestyle might lower their risk of venous thrombosis.
In those with cancer who are still walking about yet receiving chemotherapy, LMWH decreases the risk of VTE. Due to potential concerns of bleeding its routine use is not recommended. For people who are having surgery for cancer, it is recommended that they receive anticoagulation therapy (preferably LMWH) in order to prevent a VTE. LMWH is recommended for at least 7–10 days following cancer surgery, and for one month following surgery for people who have a high risk of VTEs.
In adults who have had their lower leg casted or placed in a brace for more than a week, LMWH decreased the risk of VTEs. LMWH is recommended for adults not in hospital with an above-knee cast and a below-knee cast, and is safe for this indication.
Following the completion of warfarin in those with prior VTE, long term aspirin is beneficial.
The overall absolute risk of venous thrombosis per 100,000 woman years in current use of combined oral contraceptives is approximately 60, compared to 30 in non-users. The risk of thromboembolism varies with different types of birth control pills; Compared with combined oral contraceptives containing levonorgestrel (LNG), and with the same dose of estrogen and duration of use, the rate ratio of deep venous thrombosis for combined oral contraceptives with norethisterone is 0.98, with norgestimate 1.19, with desogestrel (DSG) 1.82, with gestodene 1.86, with drospirenone (DRSP) 1.64, and with cyproterone acetate 1.88. Venous thromboembolism occurs in 100–200 per 100,000 pregnant women every year.
Regarding family history, age has substantial effect modification. For individuals with two or more affected siblings, the highest incidence rates is found among those ≥70 years of age (390 per 100,000 in male and 370 per 100,000 in female individuals), whereas the highest incidence ratios compared to those without affected siblings occurred at much younger ages (ratio of 4.3 among male individuals 20 to 29 years of age and 5.5 among female individuals 10 to 19 years of age).
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
With treatment, approximately 80% of patients are alive (approx. 95% after surgery) and approximately 70% of infarcted limbs remain vital after 6 months.
The main causes of thrombosis are given in Virchow's triad which lists thrombophilia, endothelial cell injury, and disturbed blood flow.
Passage of a clot (thrombus) from a systemic vein to a systemic artery. When clots in systemic veins break off (embolize), they travel first to the right side of the heart and, normally, then to the lungs where they lodge, causing pulmonary embolism. On the other hand, when there is a hole at the septum, either upper chambers of the heart (an atrial septal defect) or lower chambers of the heart (ventricular septal defects), a clot can cross from the right to the left side of the heart, then pass into the systemic arteries as a paradoxical embolism. Once in the arterial circulation, a clot can travel to the brain, block a vessel there, and cause a stroke (cerebrovascular accident).
The best course of treatment varies from case to case. The physician must take into account the details in the case before deciding on the appropriate treatment. No treatment is effective for every patient.
Treatment depends on many factors, including:
- Location of lesions
- Anatomy of lesions
- Patient risk factors
- Procedural risk
- Clinical presentation of symptoms
- Duration of symptoms
- etc.
Causes include:
- Thrombosis (approximately 40% of cases)
- Arterial embolism (approximately 40%)
- arteriosclerosis obliterans
Another cause of limb infarction is "skeletal muscle infarction" as a rare complication of long standing, poorly controlled diabetes mellitus.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Treatment of an episode of cholesterol emboli is generally symptomatic, i.e. it deals with the symptoms and complications but cannot reverse the phenomenon itself. In kidney failure resulting from cholesterol crystal emboli, statins (medication that reduces cholesterol levels) have been shown to halve the risk of requiring hemodialysis.
It is relatively unusual (25% of the total number of cases) for cholesterol emboli to occur spontaneously; this usually happens in people with severe atherosclerosis of the large arteries such as the aorta. In the other 75% it is a complication of medical procedures involving the blood vessels, such as vascular surgery or angiography. In coronary catheterization, for instance, the incidence is 1.4%. Furthermore, cholesterol embolism may develop after the commencement of anticoagulants or thrombolytic medication that decrease blood clotting or dissolve blood clots, respectively. They probably lead to cholesterol emboli by removing blood clots that cover up a damaged atherosclerotic plaque; cholesterol-rich debris can then enter the bloodsteam.
A paradoxical embolism, also called a crossed embolism, refers to an embolus which is carried from the venous side of circulation to the arterial side, or vice versa. It is a kind of stroke or other form of arterial thrombosis caused by embolism of a thrombus (blood clot), air, tumor, fat, or amniotic fluid of venous origin, which travels to the arterial side through a lateral opening in the heart, such as a patent foramen ovale, or arteriovenous shunts in the lungs.
The opening is typically an atrial septal defect, but can also be a ventricular septal defect.
Paradoxical embolisms represent two percent of arterial emboli.
Currently laboratory testing is not as reliable as observation when it comes to defining the parameters of Thrombotic Storm. Careful evaluation of possible thrombosis in other organ systems is pertinent in expediting treatment to prevent fatality.Preliminary diagnosis consists of evidence documented with proper imaging studies such as CT scan, MRI, or echocardiography, which demonstrate a thromboembolic occlusion in the veins and/or arteries. Vascular occlusions mentioned must include at least two of the clinic events:
- Deep venous thrombosis affecting one (or more) limbs and/or pulmonary embolism.
- Cerebral vein thrombosis.
- Portal vein thrombosis, hepatic vein, or other intra-abdominal thrombotic events.
- Jugular vein thrombosis in the absence of ipsilateral arm vein thrombosis and in the absence of ipsilateral central venous access.
- Peripheral arterial occlusions, in the absence of underlying atherosclerotic vascular disease,
- resulting in extremity ischemia and/or infarction.
- Myocardial infarction, in the absence of severe coronary artery disease
- Stroke and/or transient ischemic attack, in the absence of severe atherosclerotic disease and at an age less than 60 years.
- Central retinal vein and/or central retinal arterial thrombosis.
- Small vessel thrombosis affecting one or more organs, systems, or tissue; must be documented by histopathology.
In addition to the previously noted vascular occlusions, development of different thromboembolic manifestations simultaneously or within one or two weeks must occur and the patient must have an underlying inherited or acquired hypercoagulable state (other than Antiphospholipid syndrome)
Treatment for Thrombotic Storm may include lifelong anticoagulation therapy and/or thrombolytic therapy, plasmapherisis, and corticosteroids. Studies have shown that when anticoagulant therapy is withheld recurrence of thrombosis usually follows. INR is closely monitored in the course of treatment.