Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Decreased kidney function is a major cause of hyperkalemia. This is especially pronounced in acute kidney injury where the glomerular filtration rate and tubular flow are markedly decreased, characterised by reduced urine output. This can be further intensified by active cellular breakdown which causes increase in serum potassium levels. In chronic kidney disease, hyperkalemia occurs as a result of reduced aldosterone responsiveness and reduced sodium and watery deliveries in distal tubules.
Medications that interferes with urinary excretion by inhibiting the renin–angiotensin system is one of the most common causes of hyperkalemia. Examples of medications that can cause hyperkalemia include ACE inhibitors, angiotensin receptor blockers, beta blockers, and calcineurin inhibitor immunosuppressants such as ciclosporin and tacrolimus. For potassium-sparing diuretics, such as amiloride and triamterene; both the drugs block epithelial sodium channels in the collecting tubules, thereby preventing potassium excretion into urine. Spironolactone acts by competitively inhibiting the action of aldosterone. NSAIDs such as ibuprofen, naproxen, or celecoxib inhibit prostaglandin synthesis, leading to reduced production of renin and aldosterone, causing potassium retention. The antibiotic trimethoprim and the antiparasitic medication pentamidine inhibits potassium excretion, which is similar to mechanism of action by amiloride and triamterene.
Mineralocorticoid (aldosterone) deficiency or resistance can also cause hyperkalemia. Primary adrenal insufficiency are: Addison's disease and congenital adrenal hyperplasia (CAH) (including enzyme deficiencies such as 21α hydroxylase, 17α hydroxylase, 11β hydroxylase, or 3β dehydrogenase).
- Type IV renal tubular acidosis (aldosterone resistance of the kidney's tubules)
- Gordon's syndrome (pseudohypoaldosteronism type II) ("familial hypertension with hyperkalemia"), a rare genetic disorder caused by defective modulators of salt transporters, including the thiazide-sensitive Na-Cl cotransporter.
In the United States, hyperkalemia is induced by lethal injection in capital punishment cases. Potassium chloride is the last of the three drugs administered and actually causes death. Injecting potassium chloride into the heart muscle disrupts the signal that causes the heart to beat. This same amount of potassium chloride would do no harm if taken orally and not injected directly into the blood.
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
The disorder affects about 1 out of 1,000,000 people, however epidemiological data are limited and there are regional differences due to cofounder effect (e.g. in Canada) or intermarriage.
Renal failure is the major cause of morbidity and mortality in complete LCAT deficiency, while in partial deficiency (fish eye disease) major cause of morbidity is visual impairment due to corneal opacity. These patients have low HDL cholesterol but surprisingly premature atherosclerosis is not seen. However, there are some reported cases.
Both conditions are treated with fibrate drugs, which act on the peroxisome proliferator-activated receptors (PPARs), specifically PPARα, to decrease free fatty acid production. Statin drugs, especially the synthetic statins (atorvastatin and rosuvastatin), can decrease LDL levels by increasing hepatic reuptake of LDL due to increased LDL-receptor expression.
Lipoprotein lipase deficiency (also known as "familial chylomicronemia syndrome", "chylomicronemia", "chylomicronemia syndrome" and "hyperlipoproteinemia type Ia") is a rare autosomal recessive lipid disorder caused by a mutation in the gene which codes lipoprotein lipase. As a result, afflicted individuals lack the ability to produce lipoprotein lipase enzymes necessary for effective breakdown of triglycerides.
Most cases of FHH are associated with loss of function mutations in the calcium-sensing receptor (CaSR) gene, expressed in parathyroid and kidney tissue. These mutations decrease the receptor's sensitivity to calcium, resulting in reduced receptor stimulation at normal serum calcium levels. As a result, inhibition of parathyroid hormone release does not occur until higher serum calcium levels are attained, creating a new equilibrium. This is the opposite of what happens with the CaSR sensitizer, cinacalcet. Functionally, parathyroid hormone (PTH) increases calcium resorption from the bone and increases phosphate excretion from the kidney which increases serum calcium and decreases serum phosphate. Individuals with FHH, however, typically have normal PTH levels, as normal calcium homeostasis is maintained, albeit at a higher equilibrium set point. As a consequence, these individuals are not at increased risk of the complications of hyperparathyroidism.
Another form has been associated with chromosome 3q.
The two forms of this lipid disorder are:
- Familial combined hyperlipidemia (FCH) is the familial occurrence of this disorder, probably caused by decreased LDL receptor and increased ApoB.
- Acquired combined hyperlipidemia is extremely common in patients who suffer from other diseases from the metabolic syndrome ("syndrome X", incorporating diabetes mellitus type II, hypertension, central obesity and CH). Excessive free fatty acid production by various tissues leads to increased VLDL synthesis by the liver. Initially, most VLDL is converted into LDL until this mechanism is saturated, after which VLDL levels elevate.
Acquired hyperlipidemias (also called secondary dyslipoproteinemias) often mimic primary forms of hyperlipidemia and can have similar consequences. They may result in increased risk of premature atherosclerosis or, when associated with marked hypertriglyceridemia, may lead to pancreatitis and other complications of the chylomicronemia syndrome. The most common causes of acquired hyperlipidemia are:
- diabetes mellitus
- Use of drugs such as thiazide diuretics, beta blockers, and estrogens
Other conditions leading to acquired hyperlipidemia include:
- Hypothyroidism
- Kidney failure
- Nephrotic syndrome
- Alcohol consumption
- Some rare endocrine disorders and metabolic disorders
Treatment of the underlying condition, when possible, or discontinuation of the offending drugs usually leads to an improvement in the hyperlipidemia.
Another acquired cause of hyperlipidemia, although not always included in this category, is postprandial hyperlipidemia, a normal increase following ingestion of food.
These unclassified forms are extremely rare:
- Hyperalphalipoproteinemia
- Polygenic hypercholesterolemia
Familial dysalbuminemic hyperthyroxinemia is a type of hyperthyroxinemia associated with mutations in the human serum albumin gene.
The term was introduced in 1982.
Familial dysbetalipoproteinemia or type III hyperlipoproteinemia (also known as remnant hyperlipidemia, "remnant hyperlipoproteinaemia", "broad beta disease" and "remnant removal disease") is a condition characterized by increased total cholesterol and triglyceride levels, and decreased HDL levels.
This condition is caused by a mutation in apolipoprotein E (ApoE), that serves as a ligand for the liver receptors for chylomicrons, IDL and VLDL or Very Low Density lipoprotein receptors. The normal ApoE turns into the defective ApoE2 form due to a genetic mutation. This defect prevents the normal metabolism of chylomicrons, IDL and VLDL, otherwise known as remnants, and therefore leads to accumulation of cholesterol within scavenger cells (macrophages) to enhance development and acceleration of atherosclerosis.
Genetic contributions are usually due to the additive effects of multiple genes, though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia.
Genetic abnormalities are in some cases completely responsible for hypercholesterolemia, such as in familial hypercholesterolemia, where one or more genetic mutations in the autosomal dominant APOB gene exist, the autosomal recessive "LDLRAP1" gene, autosomal dominant familial hypercholesterolemia ("HCHOLA3") variant of the "PCSK9" gene, or the LDL receptor gene. Familial hypercholesterolemia affects about one in five hundred people.
Apolipoprotein B deficiency (also known as "Familial defective apolipoprotein B-100") is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of apoB-100 for the low-density lipoprotein receptor (LDL Receptor) . This causes impairments in LDL catabolism, resulting in increased levels of low-density lipoprotein in the blood. The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial hypercholesterolemia. Treatment may include, niacin or statin or ezetimibe.
It is also known as "normotriglyceridemic hypobetalipoproteinemia".
In at least 25% of cases (the most commonly occurring classification), neurogenic diabetes insipidus is of unknown cause, meaning that the lack of vasopressin production arose from an unknown cause.
It is also due to damage of the hypothalamus, pituitary stalk, posterior pituitary, and can arise from head trauma.
Lecithin cholesterol acyltransferase deficiency (LCAT deficiency) is a disorder of lipoprotein metabolism. The disease has two forms: Familial LCAT deficiency, in which there is complete LCAT deficiency, and Fish-eye disease, in which there is a partial deficiency.
Lecithin cholesterol acyltransferase catalyzes the formation of cholesterol esters in lipoproteins.
Hypercholesterolemia is typically due to a combination of environmental and genetic factors. Environmental factors include obesity, diet, and stress.
A number of other conditions can also increase cholesterol levels including diabetes mellitus type 2, obesity, alcohol use, monoclonal gammopathy, dialysis, nephrotic syndrome, hypothyroidism, Cushing’s syndrome, anorexia nervosa, medications (e.g., thiazide diuretics, ciclosporin, glucocorticoids, beta blockers, retinoic acid, antipsychotics).
The lack of vasopressin production usually results from some sort of damage to the pituitary gland. It may be caused due to damage to the brain caused by:
- Benign suprasellar tumors (20% of cases)
- Infections (encephalitis, tuberculosis etc.)
- Trauma (17% of cases) or neurosurgery (9% of cases)
- Non-infectious granuloma (sarcoidosis, Langerhans cell histiocytosis etc.)
- Leukaemia
- Autoimmune - associated with thyroiditis
- Other rare causes which include hemochromatosis and histiocytosis.
Vasopressin is released by the posterior pituitary, but unlike most other pituitary hormones, vasopressin is produced in the hypothalamus. Neurogenic diabetes insipidus can be a failure of production at the hypothalamus, or a failure of release at the pituitary.
Familial renal amyloidosis (or familial visceral amyloidosis, or hereditary amyloid nephropathy) is a form of amyloidosis primarily presenting in the kidney.
It is associated most commonly with congenital mutations in the fibrinogen alpha chain and classified as a dysfibrinogenemia (see Hereditary Fibrinogen Aα-Chain Amyloidosis). and, less commonly, with congenital mutations in apolipoprotein A1 and lysozyme.
It is also known as "Ostertag" type, after B. Ostertag, who characterized it in 1932 and 1950.
The disease has been reported to affect 3 per 1000 infants younger than 6 months in the United States. No predilection by race or sex has been established. Almost all cases occur by the age of 5 months. The familial form is inherited in an autosomal dominant fashion with variable penetrance. The familial form tends to have an earlier onset and is present at birth in 24% of cases, with an average age at onset of 6.8 weeks. The average age at onset for the sporadic form is 9–11 weeks.
Cortical hyperostosis is a potential side effect of long-term use of prostaglandins in neonates.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.