Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease is an inherited autosomal dominant disease, but the physiological cause of the dysfunction is still unclear. An acidophyllic mucopolysaccharide-containing substance was discovered, especially in cochleas, maculas, and crista ampullaris of patients with DFNA9 (a chromosome locus), as well as severe degeneration of vestibular and cochlear sensory axons and dendrites. It is suggested that the mucopolysaccharide deposit could cause strangulation of nerve endings.
The maculas and crista ampullaris are what allow for non-visual sensation of head movements. The crista ampullaris resides in the semicircular canals of the inner ear and detects angular acceleration, while the maculas are housed within the vestibule of the inner ear and detect linear acceleration. When affected, these organs can lead to vertigo and nausea because the body would always feel off-balance.
Vestibulocochlear dysfunction progressive familial, known also as familial progressive vestibulocochlear dysfunction is an autosomal dominant disease that results in sensorineural hearing loss and vestibular areflexia. Patients report feelings of vague dissiness, blurred vision, dysequilibrium in the dark, and progressive hearing impairment.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
TAA is an old term for a constellation of elements that can lead to a mitochondrial optic neuropathy. The classic patient is a man with a history of heavy alcohol and tobacco consumption. Respectively, this combines nutritional mitochondrial impairment, from vitamin deficiencies (folate and B-12) classically seen in alcoholics, with tobacco-derived products, such as cyanide and ROS. It has been suggested that the additive effect of the cyanide toxicity, ROS, and deficiencies of thiamine, riboflavin, pyridoxine, and b12 result in TAA.
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.
Individuals with Nager syndrome typically have the malformations of the auricle, external auditory canal, and middle ear, including the ossicles. These malformations were found in 80% of individuals with Nager syndrome. Inner ear malformations, however, are not typically seen in this population. Middle ear disease is common among individuals with Nager syndrome. Chronic otitis media and Eustachian tube deformity can result in conductive hearing loss. For this reason, early detection and treatment for middle ear disease is crucial in this population. Sensorineural hearing loss is not a typical characteristic of Nager syndrome; however, a subset of individuals present with a mixed hearing loss, due to a progressive sensorineural component combined with the typical conductive hearing loss (Herrman "et al.", 2005).
Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The facial nucleus itself can be affected by infarcts of the pontine arteries.
There is currently no cure for FD and death occurs in 50% of the affected individuals by age 30. There are only two treatment centers, one at New York University Hospital and one at the Sheba Medical Center in Israel. One is being planned for the San Francisco area.
The survival rate and quality of life have increased since the mid-1980s mostly due to a greater understanding of the most dangerous symptoms. At present, FD patients can be expected to function independently if treatment is begun early and major disabilities avoided.
A major issue has been aspiration pneumonia, where food or regurgitated stomach content would be aspirated into the lungs causing infections. Fundoplications (by preventing regurgitation) and gastrostomy tubes (to provide nonoral nutrition) have reduced the frequency of hospitalization.
Other issues which can be treated include FD crises, scoliosis, and various eye conditions due to limited or no tears.
An FD crisis is the body's loss of control of various autonomic nervous system functions including blood pressure, heart rate, and body temperature. Both short-term and chronic periodic high or low blood pressure have consequences and medication is used to stabilize blood pressure.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Hereditary sensory and autonomic neuropathy (HSAN) or hereditary sensory neuropathy (HSN) is a condition used to describe any of the types of this disease which inhibit sensation.
They are less common than Charcot-Marie-Tooth disease.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
Ramsay Hunt syndrome type 2 refers to shingles of the geniculate ganglion. After initial infection, varicella zoster virus lies dormant in nerve cells in the body, where it is kept in check by the immune system. Given the opportunity, for example during an illness that suppresses the immune system, the virus travels to the end of the nerve cell, where it causes the symptoms described above.
The affected ganglion is responsible for the movements of facial muscles, the touch sensation of a part of ear and ear canal, the taste function of the frontal two-thirds of the tongue, and the moisturization of the eyes and the mouth. The syndrome specifically refers to the combination of this entity with weakness of the muscles activated by the facial nerve. In isolation, the latter is called Bell's Palsy.
However, as with shingles, the lack of lesions does not definitely exclude the existence of a herpes infection. Even before the eruption of vesicles, varicella zoster virus can be detected from the skin of the ear.
Treatment with the steroid "prednisone" and the antiviral drug "acyclovir 800mg 5 times a day" is controversial, with some studies showing to achieve complete recovery in patients if started within the first three days of facial paralysis, with chances of recovery decreasing as treatment was delayed. Delay of treatment may result in permanent facial nerve paralysis. However, some studies demonstrate that even when steroids are started promptly, only 22% of all patient achieve full recovery of facial paralysis.
Treatment apparently has no effect on the recovery of hearing loss. Diazepam is sometimes used to treat the vertigo.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
The prevalence of SCA6 varies by culture. In Germany, SCA6 accounts for 10-25% of all autosomal dominant cases of SCA (SCA itself having a prevalence of 1 in 100,000). This prevalence in lower in Japan, however, where SCA6 accounts for only ~6% of spinocerebellar ataxias. In Australia, SCA6 accounts for 30% of spinocerebellar ataxia cases while 11% in the Dutch.
Hearing loss with craniofacial syndromes is a common occurrence. Many of these multianomaly disorders involve structural malformations of the outer or middle ear, making a significant hearing loss highly likely.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.
Most commonly affected is the Vertebral Basilar Artery (Vertebral Basilar Dolichoectasia or Vertebrobasillar Dolichoectasia). The Internal Carotid Artery is also at high risk to be affected. Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) are more likely to be subject to dolichoectasias. Dolichoectasias are most common in elderly males.
In cases involving the basilar artery (VBD), the pathogenesis arises from direct compression of different cranial nerves. Additionally, ischemic effects on the brain stem and cerebellar hemispheres as well as symptoms related to hydrocephalus are common. Direct cranial nerve compression can lead to isolated cranial nerve dysfunction, usually associated with a normal-sized basilar artery that is tortuous and elongated. Cranial nerve dysfunction most commonly involves the VII cranial nerve and the V cranial nerve. Multiple cranial nerve dysfunction is far more likely to occur if there is dilation (ectasia) associated with a tortuous and elongated basilar artery. Cranial nerves affected in descending order of frequency include: VII, V, III, VIII, and VI.
Internal Carotid Artery dolichoectasia is particularly interesting because the artery normally already contains one hairpin turn. Seen in an MRI as two individual arteries at this hairpin, a carotid artery dolichoectasia can progress so far as to produce a second hairpin turn and appear as three individual arteries on an MRI. In the case of a dolichoectasia of the Internal Carotid Artery (ICD), the pathogenesis is primarily related to compression of the Optic Nerves at the Optic Chiasma (see Fig. 1 and 2).
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
A combination of lifestyle modifications and medications can be used for the treatment of dolichoectasias.
- Antihypertensive medications such as Thiazides, Beta Blocker, ACE Inhibitor
- Trental or other Pentoxifylline drugs
- Dietary changes
- Weight loss
- Regular exercise
Spinocerebellar ataxia type 13 (SCA13) is a rare autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, nystagmus, and ataxia of gait, stance and the limbs due to cerebellar dysfunction. Patients with SCA13 also tend to present with epilepsy, an inability to run, and increased reflexes. This cerebellar dysfunction is permanent and progressive. SCA13 is caused by mutations in KCNC3, a gene encoding a voltage-gated potassium channel K3.3. There are two known mutations in this gene causative for SCA13. Unlike many other types of SCA, these are not polyglutamine expansions but, rather, point mutations resulting in channels with no current or altered kinetics.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
Vestibular schwannoma is a rare condition: incident rate in the U.S. in 2010 was 11/1,000,000 persons, mean age 53. Occurrence was equally distributed versus age, gender and laterality. In patients with unilateral hearing loss, only about 1 in 1000 has acoustic neuroma.