Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are case reports of gigantomastia occurring in infants as well.
The underlying cause of the rapidly growing breast connective tissue, resulting in gigantic proportions, has not been well-elucidated. However, proposed factors have included increased levels/expression of or heightened sensitivity to certain hormones (e.g., estrogen, progesterone, and prolactin) and/or growth factors (e.g., hepatic growth factor, insulin-like growth factor 1, and epidermal growth factor) in the breasts. Macromastic breasts are reported to be composed mainly of adipose and fibrous tissue, while glandular tissue remains essentially stable.
Macromastia occurs in approximately half of women with aromatase excess syndrome (a condition of hyperestrogenism). Hyperprolactinemia has been reported as a cause of some cases of macromastia. Macromastia has also been associated with hypercalcemia (which is thought to be due to excessive production of parathyroid hormone-related protein) and, rarely, systemic lupus erythematosus and pseudoangiomatous stromal hyperplasia. It is also notable that approximately two-thirds of women with macromastia are obese. Aside from aromatase (as in aromatase excess syndrome), at least two other genetic mutations (one in PTEN) have been implicated in causing macromastia.
A handful of drugs have been associated with gigantomastia, including penicillamine, bucillamine, neothetazone, ciclosporin, and indinavir.
Several treatments have been found to be effective in managing AES, including aromatase inhibitors and gonadotropin-releasing hormone analogues in both sexes, androgen replacement therapy with non-aromatizable androgens such as DHT in males, and progestogens (which, by virtue of their antigonadotropic properties at high doses, suppress estrogen levels) in females. In addition, male patients often seek bilateral mastectomy, whereas females may opt for breast reduction if warranted.
Medical treatment of AES is not absolutely necessary, but it is recommended as the condition, if left untreated, may lead to excessively large breasts (which may necessitate surgical reduction), problems with fertility, and an increased risk of endometriosis and estrogen-dependent cancers such as breast and endometrial cancers later in life. At least one case of male breast cancer has been reported.
The root cause of AES is not entirely clear, but it has been elucidated that inheritable, autosomal dominant genetic mutations affecting "CYP19A1", the gene which encodes aromatase, are involved in its etiology. Different mutations are associated with differential severity of symptoms, such as mild to severe gynecomastia.
AGL with autoimmune origin is responsible for about 25% of all AGL reports. Those with autoimmune origin stems from other autoimmune diseases, most commonly with juvenile dermatomyositis and autoimmune hepatitis, but also occurs with rheumatoid arthritis, systemic lupus erythematous, and Sjogren syndrome.
About 25% of previously reported AGL is associated with panniculitis. Panniculitis is an inflammatory nodules of the subcutaneous fat, and in this type of AGL, adipose destruction originates locally at the infection or inflammation site and develops into generalized lipodystrophy.
The cause of the disease is unknown. It was originally thought that the epidermal changes were secondary to profound malnutrition as a result of protein-losing enteropathy. Recent findings have called this hypothesis into question; specifically, the hair and nail changes may not improve with improved nutrition.
Other conditions consisting of multiple hamartomatous polyps of the digestive tract include Peutz-Jeghers syndrome, juvenile polyposis, and Cowden disease. Related polyposis conditions are familial adenomatous polyposis, attenuated familial adenomatous polyposis, Birt–Hogg–Dubé syndrome and MUTYH.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
Microcoria is a congenital disease in which the pupils of the subject are narrower than 2 mm in diameter. Microcoria is associated with juvenile-onset glaucoma. It is also associated with Pierson syndrome chararacterized by microcoria and congenital nephrotic syndrome. The defect is in the Laminin beta 2 gene on chromosome 3p21 which encodes a protein essential to the glomerular basement membrane.
It is also part of the known manifestations of a born infant to a mother suffering from uncontrolled hyperglycemia. Other symptoms include transposition of great vessels, respiratory distress secondary to surfactant defect, sacral agensis, jitteriness, irritability, and lethargy due to rebound fetal hypoglycemia. Congenital microcoria is an autosomal dominant trait. However, it can also occur sporadically.
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
In adults, fibrates and statins have been prescribed to treat hyperglycerolemia by lowering blood glycerol levels. Fibrates are a class of drugs that are known as amphipathic carboxylic acids that are often used in combination with Statins. Fibrates work by lowering blood triglyceride concentrations. When combined with statins, the combination will lower LDL cholesterol, lower blood triglycerides and increase HDL cholesterol levels.
If hyperglycerolemia is found in a young child without any family history of this condition, then it may be difficult to know whether the young child has the symptomatic or benign form of the disorder. Common treatments include: a low-fat diet, IV glucose if necessary, monitor for insulin resistance and diabetes, evaluate for Duchenne muscular dystrophy, adrenal insufficiency & developmental delay.
The Genetic and Rare Diseases Information Center (GARD) does not list any treatments at this time.
Treatment for secondary juvenile osteoporosis focuses on treating any underlying disorder.
A prenatal diagnosis was made by Kleijer et al. in 1979 by measuring beta-galactosidase and neuraminidase activities in cultured amniotic fluid cells.
It is associated with cathepsin A.This disease is due to mutations in the CTSA gene which encodes the protective protein/cathepsin A (PPCA). This in turn leads to a secondary deficiency of beta-galactosidase (GLB1) and neuraminidase 1 (NEU1).There are three distinct CTSA isoforms.
Cronkhite–Canada syndrome is a rare syndrome characterized by multiple polyps of the digestive tract. It is sporadic (i.e. it does not seem to be a hereditary disease), and it is currently considered acquired and idiopathic (i.e. cause remains unknown).
About two-thirds of patients are of Japanese descent and the male to female ratio is 2:1. It was characterized in 1955.
Juvenile hyaline fibromatosis (also known as "Fibromatosis hyalinica multiplex juvenilis," "Murray–Puretic–Drescher syndrome") is a very rare, autosomal recessive disease due to mutations in capillary morphogenesis protein-2 (CMG-2 gene). It occurs from early childhood to adulthood, and presents as slow-growing, pearly white or skin-colored dermal or subcutaneous papules or nodules on the face, scalp, and back, which may be confused clinically with neurofibromatosis.
Juvenile osteoporosis is osteoporosis in children and adolescents.Osteoporosis is rare in children and adolescents. When it occurs, it is usually secondary to some other condition, "e.g." osteogenesis imperfecta, rickets, eating disorders or arthritis. In some cases, there is no known cause and it is called idiopathic juvenile osteoporosis. Idiopathic juvenile osteoporosis usually goes away spontaneously.
Also, child abuse should be suspected in recurring cases of bone fracture.
Most juvenile polyps are benign, however, malignancy can occur. The cumulative lifetime risk of colorectal cancer is 39% in patients with juvenile polyposis syndrome.
Self-healing papular mucinosis is a skin condition caused by fibroblasts producing abnormally large amounts of mucopolysaccharides, and may present in adult and juvenile forms. The juvenile variant is also called self-healing juvenile cutaneous mucinosis.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
Ackerman syndrome is a familial syndrome of fused molar roots with a single canal (taurodontism), hypotrichosis, full upper lip without a cupid’s bow, thickened and wide philtrum, and occasional juvenile glaucoma.
It was described by James L. Ackerman, A. Leon Ackerman, and A. Bernard Ackerman.
It can also refer to interstitial granulomatous dermatitis.
Self-healing juvenile cutaneous mucinosis is a skin condition caused by fibroblasts producing abnormally large amounts of mucopolysaccharides, and is characterized by the sudden onset of skin lesions and polyarthritis.
An inherited disorder associated with the deposition of a steroid known as cholestanol in the brain and other tissues and with elevated levels of cholesterol in plasma but with normal total cholesterol level; it is characterized by progressive cerebellar ataxia beginning after puberty and by juvenile cataracts, juvenile or infantile onset chronic diarrhea, childhood neurological deficit, and tendineous or tuberous xanthomas.
Adenomyoma is a tumor ("-oma") including components derived from glands ("adeno-") and muscle ("-my-"). It is a type of complex and mixed tumor.