Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
It is estimated that this much less common form of retinoschisis affects one in 5,000 to 25,000 individuals, primarily young males. "Schisis" is derived from the Greek word meaning "splitting", describing the splitting of the retinal layers from each other. However, "schisis" is a word fragment, and the term "retinoschisis" should be used, as should the term "iridoschisis" when describing splitting of the iris. If the retinoschisis involves the macula, then the high-resolution central area of vision used to view detail is lost, and this one form of macular disease. Although it might be described by some as a "degeneration", the term "macular degeneration" should be reserved for the specific disease "age-related macular degeneration".
Retinoschisis can be caused by an X-linked genetic defect, affecting the vision of men who inherit the disease from their unaffected carrier mothers. The genetic form of this disease usually starts during childhood and is called X-linked Juvenile Retinoschisis (XLRS) or Congenital Retinoschisis. Affected males are usually identified in grade school, but occasionally are identified as young infants.
Very few affected individuals go completely blind from retinoschisis, but some sufferers have very limited reading vision and are "legally blind". Visual acuity can be reduced to less than 20/200 in both eyes. Individuals affected by XLRS are at an increased risk for retinal detachment and eye hemorrhage, among other potential complications.
Retinoschisis causes acuity loss in the center of the visual field through the formation of tiny cysts in the retina, often forming a "spoke-wheel" pattern that can be very subtle. The cysts are usually only detectable by a trained clinician. In some cases vision cannot be improved by glasses, as the nerve tissue itself is damaged by these cysts.
The National Eye Institute (NEI) of the National Institutes of Health (NIH) is currently conducting clinical and genetic studies of X-Linked Juvenile Retinoschisis. This study is currently recruiting patients. A better understanding of why and how XLRS develops might lead to improved treatments. Males diagnosed with X-linked juvenile retinoschisis and females who are suspected carriers may be eligible to participate. In addition to giving a medical history and submitting medical records, participants submit a blood sample and the NEI will perform a genetic analysis. There is no cost to participate in this study.
CSR is a fluid detachment of macula layers from their supporting tissue. This allows choroidal fluid to leak beneath the retina. The buildup of fluid seems to occur because of small breaks in the retinal pigment epithelium.
CSR is sometimes called "idiopathic CSR" which means that its cause is unknown. Nevertheless, stress appears to play an important role. An oft-cited but potentially inaccurate conclusion is that persons in stressful occupations, such as airplane pilots, have a higher incidence of CSR.
CSR has also been associated with cortisol and corticosteroids. Persons with CSR have higher levels of cortisol. Cortisol is a hormone secreted by the adrenal cortex which allows the body to deal with stress, which may explain the CSR-stress association. There is extensive evidence to the effect that corticosteroids (e.g. cortisone), commonly used to treat inflammations, allergies, skin conditions and even certain eye conditions, can trigger CSR, aggravate it and cause relapses. In a study documented by Indian Journal of Pharmacology, a young male was using Prednisolone and began to display subretinal fluid indicative of CSR. With the discontinuation of the steroid drop the subretinal fluid resolved and did not show any sign of recurrence. Thus indicating the steroid was the probable cause of the CSR. A study of 60 persons with Cushing's syndrome found CSR in 3 (5%). Cushing's syndrome is characterized by very high cortisol levels. Certain sympathomimetic drugs have also been associated with causing the disease.
Evidence has also implicated helicobacter pylori (see gastritis) as playing a role. It would appear that the presence of the bacteria is well correlated with visual acuity and other retinal findings following an attack.
Evidence also shows that sufferers of MPGN type II kidney disease can develop retinal abnormalities including CSR caused by deposits of the same material that originally damaged the glomerular basement membrane in the kidneys.
The prognosis for CSR is generally excellent. Whilst immediate vision loss may be as poor as 20/200 in the affected eye, clinically over 90% of patients regain 20/30 vision or better within 6 months.
Once the fluid has resolved, by itself or through treatment, visual acuity should continue to improve and distortion should reduce as the eye heals. However, some visual abnormalities can remain even if visual acuity is measured at 20/20, and lasting problems include decreased night vision, reduced color discrimination, and localized distortion caused by scarring of the sub-retinal layers.
Complications include subretinal neovascularization and pigment epithelial detachment.
The disease can re-occur causing progressive vision loss. There is also a chronic form, titled as type II central serous retinopathy, which occurs in approximately 5% of cases. This exhibits diffuse rather than focalized abnormality of the pigment epithelium, producing a persistent subretinal fluid. The serous fluid in these cases tends to be shallow rather than dome shaped. Prognosis for this condition is less favorable and continued clinical consultation is advised.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
Studies have identified the following abnormalities as risk factors for the development of BRVO:
- hypertension
- cardiovascular disease
- obesity
- glaucoma
Diabetes mellitus was not a major independent risk factor.
Over time, it is common for the vitreous within the human eye to liquify and collapse in processes known as syneresis and synchisis respectively. This creates fluid-filled areas that can combine to form pockets of vitreous gel that are mostly liquid with very small concentrations of collagen. If these liquid pockets are close enough to the interface between the vitreous gel and the retina, they can cause complete separation of the vitreous from the retina in a normally occurring process in older humans called posterior vitreous detachment (PVD). PVD in of itself is not dangerous and a natural process.
If the separation of the vitreous from the retina is not complete, areas of focal attachment or adhesions can occur, i.e. a VMA. The pulling forces or traction from this adhesion on the retinal surface can sometimes cause edema within the retina, damage to retinal blood vessels causing bleeding, or damage to the optic nerve causing disruption in the nerve signals sent to the brain for visual processing. It is important to note that while the VMA itself is not dangerous, the resultant pulling on the retina called vitreomacular traction (VMT) causes the above damage. The size and strength of the VMA determine the variety of resulting pathologies or symptoms.
VMA can also lead to the development of VMT/traction-related complications such as macular puckers and macular holes leading to distorted vision or metamorphopsia; epiretinal membrane; tractional macular oedema; myopic macular retinoschisis; visual impairment; blindness. The incidence of VMA is reported as high as 84% for patients with macular hole, 100% for patients with vitreomacular traction syndrome, and 56% in idiopathic epimacular membrane.
Macular telangiectasia describes two distinct retinal diseases affecting the macula of the eye, macular telangiectasia type 1 and macular telangiectasia type 2.
Macular telangiectasia (MacTel) type 1 is a very rare disease, typically unilateral and usually affecting male patients. MacTel type 2 is more frequent than type 1 and generally affects both eyes (bilateral). It usually affects both sexes equally. Both types of MacTel should not be confused with Age-related macular degeneration (AMD), from which it can be distinguished by symptoms, clinical features, pathogenesis, and disease management. However, both AMD and MacTel eventually lead to (photoreceptor) atrophy and thus loss of central vision.
The etiology of both types of MacTel is still unknown and no treatment has been found to be effective to prevent further progression. Because lost photoreceptors cannot be recovered, early diagnosis and treatment appear to be essential to prevent loss of visual function. Several centers are currently trying to find new diagnostics and treatments to understand the causes and biochemical reactions in order to halt or counteract the adverse effects.
Contemporary research has shown that MacTel type 2 is likely a neurodegenerative disease with secondary changes of the blood vessels of the macula. Although MacTel type 2 has been previously regarded as a rare disease, it is in fact probably much more common than previously thought. The very subtle nature of the early findings in MacTel mean the diagnoses are often missed by optometrists and general ophthalmologists. Due to increased research activity since 2005, many new insights have been gained into this condition since its first description by Dr. J. Donald Gass in 1982.
Although it is frequently claimed that the retina is burned by looking at the sun, retinal damage appears to occur primarily due to photochemical injury rather than thermal injury. The temperature rise from looking at the sun with a 3-mm pupil only causes a 4 °C increase in temperature, insufficient to photocoagulate. The energy is still phototoxic: since light promotes oxidation, chemical reactions occur in the exposed tissues with unbonded oxygen molecules. It also appears that central serous retinopathy can be a result of a depression in a treated solar damaged eye.
The duration of exposure necessary to cause injury varies with the intensity of light, and also affects the possibility and length of recovery
The causes of macular edema are numerous and different causes may be inter-related.
- It is commonly associated with diabetes. Chronic or uncontrolled diabetes type 2 can affect peripheral blood vessels including those of the retina which may leak fluid, blood and occasionally fats into the retina causing it to swell.
- Age-related macular degeneration may cause macular edema. As individuals age there may be a natural deterioration in the macula which can lead to the depositing of drusen under the retina sometimes with the formation of abnormal blood vessels.
- Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) also known as Irvine-Gass syndrome The surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. Less common today with modern lens replacement techniques.
- Chronic uveitis and intermediate uveitis can be a cause.
- Blockage of a vein in the retina can cause engorgement of the other retinal veins causing them to leak fluid under or into the retina. The blockage may be caused, among other things, by atherosclerosis, high blood pressure and glaucoma.
- A number of drugs can cause changes in the retina that can lead to macular edema. The effect of each drug is variable and some drugs have a lesser role in causation. The principal medication known to affect the retina are:- latanoprost, epinephrine, rosiglitazone, timolol and thiazolidinediones among others.
- A few congenital diseases are known to be associated with macular edema for example retinitis pigmentosa and retinoschisis.
Generally speaking, people diagnosed with photic retinopathy recover visual acuity completely within two months, though more severe cases may take longer, or not see complete recovery at all.
Berlin's edema (commotio retinae) is a common condition caused by blunt injury to the eye. It is characterized by decreased vision in the injured eye a few hours after the injury. Under examination the retina appears opaque and white in colour in the periphery but the blood vessels are normally seen along with "cherry red spot" in the foveal reigion.This whitening is indicative of cell damage, which occurs in the retinal pigment epithelium and outer segment layer of photoreceptors. Damage to the outer segment often results in photoreceptor death through uncertain mechanisms. Usually there is no leakage of fluid and therefore it is not considered a true edema. The choroidal fluorescence in fluorescent angiography is absent. Visual acuity ranges from 20/20 to 20/400.
The prognosis is excellent except in case of complications of choroidal rupture, hemorrhage or pigment epithelial damage, but damage to the macula will result in poorer recovery. The outcome can be worsened in the case of retinal detachment, atrophy or hyperplasia. Visual field defects can occur. In late cases cystoid macular edema sometimes develops which can further lead to macular destruction.
Commotio retinae is usually self limiting and there is no treatment as such. It usually resolves in 3–4 weeks without any complications and sequelae.
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Diplopia has a diverse range of ophthalmologic, infectious, autoimmune, neurological, and neoplastic causes.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
Cystoid macular edema (CME) involves fluid accumulation in the outer plexiform layer secondary to abnormal perifoveal retinal capillary permeability. The edema is termed "cystoid" as it appears cystic; however, lacking an epithelial coating, it is not truly cystic. The cause for CME can be remembered with the mnemonic "DEPRIVEN" (diabetes, epinepherine, pars planitis, retinitis pigmentosa, Irvine-Gass syndrome, venous occlusion, E2-prostaglandin analogues, nicotinic acid/niacin).
Diabetic macular edema (DME) is similarly caused by leaking macular capillaries. DME is the most common cause of visual loss in both proliferative, and non-proliferative diabetic retinopathy.
Geographic Atrophy (GA), also known as atrophic age-related macular degeneration (AMD) or advanced dry AMD, is an advanced form of age-related macular degeneration that can result in the progressive and irreversible loss of retina (photoreceptors, retinal pigment epithelium, choriocappillaris) which can lead to a loss of visual function over time. It is estimated that GA affects >5 million people worldwide and approximately 1 million patients in the US, which is similar to the prevalence of neovascular (wet) AMD, the other advanced form of the disease.
The incidence of advanced AMD, both geographic atrophy and neovascular AMD, increases exponentially with age and while there are therapies for wet AMD, GA currently has no approved treatment options. The aim of most current clinical trials is to reduce the progression of GA lesion enlargement.
Macular hypoplasia, also known as foveal hypoplasia, is a rare medical condition involving the underdevelopment of the macula, a small area on the retina (the eye's internal surface) responsible for seeing in detail. Macular hypoplasia is often associated with albinism.
The appropriate treatment for binocular diplopia will depend upon the cause of the condition producing the symptoms. Efforts must first be made to identify and treat the underlying cause of the problem. Treatment options include eye exercises, wearing an eye patch on alternative eyes, prism correction, and in more extreme situations, surgery or botulinum toxin.
If diplopia turns out to be intractable, it can be managed as last resort by obscuring part of the patient's field of view. This approach is outlined in the article on diplopia occurring in association with a condition called "horror fusionis".
The pathogenesis of GA is multifactorial and is generally thought to be triggered by intrinsic and extrinsic stressors of the poorly regenerative retinal pigment epithelium (RPE), particularly oxidative stress caused by the high metabolic demand of photoreceptors, photo-oxidation, and environmental stressors such as cigarette smoke. Variations in several genes, particularly in the complement system, increase the risk of developing GA. This is an active area of research but the current hypothesis is that with aging, damage caused by these stressors accumulates, which coupled with a genetic predisposition, results in the appearance of drusen and lipofuscin deposits (early and intermediate AMD). These and other products of oxidative stress can trigger inflammation via multiple pathways, particularly the complement cascade, ultimately leading to loss of photoreceptors, RPE, and choriocapillaris, culminating in atrophic lesions that grow over time.
Familial exudative vitreoretinopathy (FEVR) ( ) is a genetic disorder affecting the growth and development of blood vessels in the retina of the eye. This disease can lead to visual impairment and sometimes complete blindness in one or both eyes. FEVR is characterized by exudative leakage and hemorrhage of the blood vessels in the retina, along with incomplete vascularization of the peripheral retina. The disease process can lead to retinal folds, tears, and detachments.
In general, BRVO has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final VA of 20/40 or better even without any treatment. With time the dramatic picture of an acute BRVO becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.