Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
These unclassified forms are extremely rare:
- Hyperalphalipoproteinemia
- Polygenic hypercholesterolemia
Screening among family members of people with known FH is cost-effective. Other strategies such as universal screening at the age of 16 were suggested in 2001. The latter approach may however be less cost-effective in the short term. Screening at an age lower than 16 was thought likely to lead to an unacceptably high rate of false positives.
A 2007 meta-analysis found that "the proposed strategy of screening children and parents for familial hypercholesterolaemia could have considerable impact in preventing the medical consequences of this disorder in two generations simultaneously." "The use of total cholesterol alone may best discriminate between people with and without FH between the ages of 1 to 9 years."
Screening of toddlers has been suggested, and results of a trial on 10,000 one-year-olds were published in 2016. Work was needed to find whether screening was cost-effective, and acceptable to families.
Hyperlipoproteinemia type V, also known as mixed hyperlipoproteinemia familial or mixed hyperlipidemia, is very similar to type I, but with high VLDL in addition to chylomicrons.
It is also associated with glucose intolerance and hyperuricemia.
In medicine, combined hyperlipidemia (or -aemia) (also known as "multiple-type hyperlipoproteinemia") is a commonly occurring form of hypercholesterolemia (elevated cholesterol levels) characterized by increased LDL and triglyceride concentrations, often accompanied by decreased HDL. On lipoprotein electrophoresis (a test now rarely performed) it shows as a hyperlipoproteinemia type IIB. It is the most common inherited lipid disorder, occurring in about one in 200 persons. In fact, almost one in five individuals who develop coronary heart disease before the age of 60 has this disorder.
The elevated triglyceride levels (>5 mmol/l) are generally due to an increase in very low density lipoprotein (VLDL), a class of lipoprotein prone to cause atherosclerosis.
Types
1. Familial combined hyperlipidemia (FCH) is the familial occurrence of this disorder, probably caused by decreased LDL receptor and increased ApoB.
2. FCH is extremely common in patients who suffer from other diseases from the metabolic syndrome ("syndrome X", incorporating diabetes mellitus type II, hypertension, central obesity and CH). Excessive free fatty acid production by various tissues leads to increased VLDL synthesis by the liver. Initially, most VLDL is converted into LDL until this mechanism is saturated, after which VLDL levels elevate.
Both conditions are treated with fibrate drugs, which act on the peroxisome proliferator-activated receptors (PPARs), specifically PPARα, to decrease free fatty acid production.
Statin drugs, especially the synthetic statins (atorvastatin and rosuvastatin) can decrease LDL levels by increasing hepatic reuptake of LDL due to increased LDL-receptor expression.
Both conditions are treated with fibrate drugs, which act on the peroxisome proliferator-activated receptors (PPARs), specifically PPARα, to decrease free fatty acid production. Statin drugs, especially the synthetic statins (atorvastatin and rosuvastatin), can decrease LDL levels by increasing hepatic reuptake of LDL due to increased LDL-receptor expression.
Developmental delay is a potential secondary effect of chronic or recurrent hypoglycemia, but is at least theoretically preventable. Normal neuronal and muscle cells do not express glucose-6-phosphatase, so GSD I causes no other neuromuscular effects.
Neutropenia is a manifestation of this disease. Granulocyte colony-stimulating factor (G-CSF, e.g. filgrastim) therapy can reduce the risk of infection.
In 2016 the United States Preventive Services Task Force concluded that testing the general population under the age of 40 without symptoms is of unclear benefit.
For those at high risk, a combination of lifestyle modification and statins has been shown to decrease mortality.
Genetic contributions are usually due to the additive effects of multiple genes, though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia.
Genetic abnormalities are in some cases completely responsible for hypercholesterolemia, such as in familial hypercholesterolemia, where one or more genetic mutations in the autosomal dominant APOB gene exist, the autosomal recessive "LDLRAP1" gene, autosomal dominant familial hypercholesterolemia ("HCHOLA3") variant of the "PCSK9" gene, or the LDL receptor gene. Familial hypercholesterolemia affects about one in five hundred people.
The two forms of this lipid disorder are:
- Familial combined hyperlipidemia (FCH) is the familial occurrence of this disorder, probably caused by decreased LDL receptor and increased ApoB.
- Acquired combined hyperlipidemia is extremely common in patients who suffer from other diseases from the metabolic syndrome ("syndrome X", incorporating diabetes mellitus type II, hypertension, central obesity and CH). Excessive free fatty acid production by various tissues leads to increased VLDL synthesis by the liver. Initially, most VLDL is converted into LDL until this mechanism is saturated, after which VLDL levels elevate.
Hypertriglyceridemia denotes high ("hyper-") blood levels ("-emia") of triglycerides, the most abundant fatty molecule in most organisms. Elevated levels of triglycerides are associated with atherosclerosis, even in the absence of hypercholesterolemia (high cholesterol levels), and predispose to cardiovascular disease. Very high triglyceride levels also increase the risk of acute pancreatitis. Hypertriglyceridemia itself is usually symptomless, although high levels may be associated with skin lesions known as "xanthomas".
The diagnosis is made on blood tests, often performed as part of screening. Once diagnosed, other blood tests are usually required to determine whether the raised triglyceride level is caused by other underlying disorders ("secondary hypertriglyceridemia") or whether no such underlying cause exists ("primary hypertriglyceridaemia"). There is a hereditary predisposition to both primary and secondary hypertriglyceridemia.
Weight loss and dietary modification may improve hypertriglyceridemia. The decision to treat hypertriglyceridemia with medication depends on the levels and on the presence of other risk factors for cardiovascular disease. Very high levels that would increase the risk of pancreatitis is treated with a drug from the fibrate class. Niacin and omega-3 fatty acids as well as drugs from the statin class may be used in conjunction, with statins being the main drug treatment for moderate hypertriglyceridemia where reduction of cardiovascular risk is required.
In some forms of MODY, standard treatment is appropriate, though exceptions occur:
- In MODY2, oral agents are relatively ineffective and insulin is unnecessary.
- In MODY1 and MODY3, insulin may be more effective than drugs to increase insulin sensitivity.
- Sulfonylureas are effective in the K channel forms of neonatal-onset diabetes. The mouse model of MODY diabetes suggested that the reduced clearance of sulfonylureas stands behind their therapeutic success in human MODY patients, but Urbanova et al. found that human MODY patients respond differently to the mouse model and that there was no consistent decrease in the clearance of sulfonylureas in randomly selected HNF1A-MODY and HNF4A-MODY patients.
Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL, "bad cholesterol"), in the blood and early cardiovascular disease. Since individuals with FH underlying body biochemistry is slightly different, their high cholesterol levels are less responsive to the kinds of cholesterol control methods which are usually more effective in people without FH (such as dietary modification and statin tablets). Nevertheless, treatment (including higher statin doses) is usually effective.
FH is classified as a type 2 familial dyslipidemia. There are five types of familial dyslipidemia (not including subtypes), and each are classified from both the altered lipid profile and by the genetic abnormality. For example, high LDL (often due to LDL receptor defect) is type 2. Others include defects in chylomicron metabolism, triglyceride metabolism, and metabolism of other cholesterol-containing particles, such as VLDL and IDL.
About 1 in 300 to 500 people have mutations in the "LDLR" gene that encodes the LDL receptor protein, which normally removes LDL from the circulation, or apolipoprotein B (ApoB), which is the part of LDL that binds with the receptor; mutations in other genes are rare. People who have one abnormal copy (are heterozygous) of the "LDLR" gene may develop cardiovascular disease prematurely at the age of 30 to 40. Having two abnormal copies (being "homozygous") may cause severe cardiovascular disease in childhood. Heterozygous FH is a common genetic disorder, inherited in an autosomal dominant pattern, occurring in 1:500 people in most countries; homozygous FH is much rarer, occurring in 1 in a million births.
Heterozygous FH is normally treated with statins, bile acid sequestrants, or other lipid lowering agents that lower cholesterol levels. New cases are generally offered genetic counseling. Homozygous FH often does not respond to medical therapy and may require other treatments, including LDL apheresis (removal of LDL in a method similar to dialysis) and occasionally liver transplantation.
Around 80 cases have been reported in the literature worldwide, hence this condition appears to be relatively rare. More than likely, sitosterolemia is significantly underdiagnosed and many patients are probably misdiagnosed with hyperlipidemia.
The following characteristics suggest the possibility of a diagnosis of MODY in hyperglycemic and diabetic patients:
- Mild to moderate hyperglycemia (typically 130–250 mg/dl, or 7–14 mmol/l) discovered before 30 years of age. However, anyone under 50 can develop MODY.
- A first-degree relative with a similar degree of diabetes.
- Absence of positive antibodies or other autoimmunity (e.g., thyroiditis) in patient and family. However, Urbanova et al. found that about one quarter of Central European MODY patients are positive for islet cell autoantibodies (GADA and IA2A). Their expression is transient but highly prevalent. The autoantibodies were found in patients with delayed diabetes onset, and in times of insufficient diabetes control. The islet cell autoantibodies are absent in MODY in at least some populations (Japanese, Britons).
- Persistence of a low insulin requirement (e.g., less than 0.5 u/kg/day) past the usual "honeymoon" period.
- Absence of obesity (although overweight or obese people can get MODY) or other problems associated with type 2 diabetes or metabolic syndrome (e.g., hypertension, hyperlipidemia, polycystic ovary syndrome).
- Insulin resistance very rarely happens.
- Cystic kidney disease in patient or close relatives.
- Non-transient neonatal diabetes, or apparent type 1 diabetes with onset before six months of age.
- Liver adenoma or hepatocellular carcinoma in MODY type 3
- Renal cysts, rudimentary or bicornuate uterus, vaginal aplasia, absence of the vas deferens, epidymal cysts in MODY type 5
The diagnosis of MODY is confirmed by specific gene testing available through commercial laboratories.
About 25% of previously reported AGL is associated with panniculitis. Panniculitis is an inflammatory nodules of the subcutaneous fat, and in this type of AGL, adipose destruction originates locally at the infection or inflammation site and develops into generalized lipodystrophy.
There is no known cause for this disease; however, three origins of AGL are generally suspected: panniculitis-associated, autoimmune-associated, and idiopathic AGLs. Triggers may include infections that aggravate the panniculitis, or any disease state that can induce autoimmunity. Overlap between panniculitis and autoimmune types also exists. Another theory suggest that AGL is an autoimmune disease itself, as panniculitis can be described as an autoimmune disease, however its triggering factors remains to be unknown. Underlying genetic factor may be associated; however neither confirmed nor rejected.
Vitamin E supplements have shown to help children with the deficiency.
This condition is caused by a mutation in apolipoprotein E (ApoE), that serves as a ligand for the liver receptors for chylomicrons, IDL and VLDL or Very Low Density lipoprotein receptors. The normal ApoE turns into the defective ApoE2 form due to a genetic mutation. This defect prevents the normal metabolism of chylomicrons, IDL and VLDL, otherwise known as remnants, and therefore leads to accumulation of cholesterol within scavenger cells (macrophages) to enhance development and acceleration of atherosclerosis.
Familial dysbetalipoproteinemia or type III hyperlipoproteinemia (also known as remnant hyperlipidemia, "remnant hyperlipoproteinaemia", "broad beta disease" and "remnant removal disease") is a condition characterized by increased total cholesterol and triglyceride levels, and decreased HDL levels.
In the setting of critical illness, low cholesterol levels are predictive of clinical deterioration, and are correlated with altered cytokine levels.
In humans with genetic loss-of-function variants in one copy of the "ANGPTL3" gene, the serum LDL-C levels are reduced. In those with loss-of-function variants in both copies of "ANGPTL3", low LDL-C, low HDL-C, and low triglycerides are seen ("familial combined hypolipidemia").
Hooft disease is a rare condition evidenced by low blood lipid level, red rash and mental and physical retardation.
Apolipoprotein B deficiency (also known as "Familial defective apolipoprotein B-100") is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of apoB-100 for the low-density lipoprotein receptor (LDL Receptor) . This causes impairments in LDL catabolism, resulting in increased levels of low-density lipoprotein in the blood. The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial hypercholesterolemia. Treatment may include, niacin or statin or ezetimibe.
It is also known as "normotriglyceridemic hypobetalipoproteinemia".
Familial acanthosis may arise as a result of an autosomal dominant trait, presenting at birth or developing during childhood.
Tangier disease (also known as Familial alpha-lipoprotein deficiency) or hypoalphalipoproteinemia is a rare inherited disorder characterized by a severe reduction in the amount of high density lipoprotein (HDL), often referred to as "good cholesterol", in the bloodstream.
Sitosterolemia (also known as "Phytosterolemia") is a rare autosomal recessively inherited lipid metabolic disorder. It is characterized by hyperabsorption and decreased biliary excretion of dietary sterols (including the plant phytosterol beta-sitosterol). Healthy persons absorb only about 5% of dietary plant sterols, but sitosterolemia patients absorb 15% to 60% of ingested sitosterol without excreting much into the bile. The phytosterol campesterol is more readily absorbed than sitosterol.
Sitosterolemia patients develop hypercholesterolemia, tendon and tuberous xanthomas, premature development of atherosclerosis, and abnormal hematologic and liver function test results.