Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Unlike other autoinflammatory disorders, patients with CANDLE do not respond to IL-1 inhibition treatment in order to stop the autoinflammatory response altogether. This suggests that the condition also involves IFN dysregulation.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
The most common known cause of the syndrome are mutations in the Proteasome Subunit, Beta Type, 8 (PSMB8) gene that codes for proteasomes that in turn break down other proteins. This occurs specifically when a mutation causes the homozygous recessive form to emerge. The mutated gene results in proteins not being degraded and oxidative proteins building up in cellular tissues, eventually leading to apoptosis, especially in muscle and fat cells.
A study conducted by Brehm et al. in November 2015 discovered additional mutations that can cause CANDLE syndrome, including PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and the proteasome maturation protein (POMP), with 8 mutations in total between them. An additional unknown mutation type in the original PSMB8 gene was also noted.
This is a rare condition with an incidence estimated to be less than 1 in a million live births. About 100 cases have been reported worldwide. The bulk of cases are sporadic but familial forms with autosomal dominant transmission have also been described.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.
This condition is inherited as an autosomal dominant syndrome and characterized by palmoplantar keratoderma, oral precursor lesions particularly on the gums (leukoplakia) and a high lifetime risk of esophageal cancer (95% develop esophageal cancer by the age of 65). Relapsing cutaneous horns of the lips has been reported in this condition.
There are several types of this condition have been described – epidermolytic (Vörner type) and non-epidermolytic. Another classification divides these into an early onset type (type B) which occurs in the first year of life and is usually benign and a type A tylosis which occurs between the ages of 5 and 15 years and is strongly associated with esophageal cancer.
Cytoglobin gene expression in oesphageal biopsies is significantly reduced (70% reduction) in this condition. The mechanism of this change is not known.
RHBDF2 may also play a role in ovarian epithelial cancer.
Possible associations with gastric cancer and lung cancer have been suggested. Other possible associations include corneal defects, congenital pulmonary stenosis, total anomalous pulmonary venous connection deafness and optic atrophy.
The life span in patients with Schnitzler syndrome has not been shown to differ much from the general population. Careful follow-up is advised, however. A significant proportion of patients develops a lymphoproliferative disorder as a complication, most commonly Waldenström's macroglobulinemia. This may lead to symptoms of hyperviscosity syndrome. AA amyloidosis has also been reported in people with Schnitzler syndrome.
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
Deficiency of the interleukin-1–receptor antagonist (DIRA) is a autosomal recessive, genetic autoinflammatory syndrome resulting from mutations in "IL1RN", the gene encoding the interleukin 1 receptor antagonist. The mutations result in an abnormal protein that is not secreted, exposing the cells to unopposed interleukin 1 activity. This results in sterile multifocal osteomyelitis, periostitis (inflammation of the membrane surrounding the bones), and pustulosis due to skin inflammation from birth.
Muckle–Wells syndrome (MWS), also known as urticaria-deafness-amyloidosis syndrome (UDA), is a rare autosomal dominant disease which causes sensorineural deafness and recurrent hives, and can lead to amyloidosis. Individuals with MWS often have episodic fever, chills, and joint pain. As a result, MWS is considered a type of periodic fever syndrome. MWS is caused by a defect in the CIAS1 gene which creates the protein cryopyrin. MWS is closely related to two other syndromes, familial cold urticaria and neonatal onset multisystem inflammatory disease—in fact, all three are related to mutations in the same gene and subsumed under the term cryopyrin-associated periodic syndromes (CAPS).
The chronic inflammation present in MWS over time can lead to deafness. In addition, the prolonged inflammation can lead to deposition of proteins in the kidney, a condition known as amyloidosis.
DIRA displays a constellation of serious symptoms which include respiratory distress, as well as the following:
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
The cause of the disease is unknown. It was originally thought that the epidermal changes were secondary to profound malnutrition as a result of protein-losing enteropathy. Recent findings have called this hypothesis into question; specifically, the hair and nail changes may not improve with improved nutrition.
Other conditions consisting of multiple hamartomatous polyps of the digestive tract include Peutz-Jeghers syndrome, juvenile polyposis, and Cowden disease. Related polyposis conditions are familial adenomatous polyposis, attenuated familial adenomatous polyposis, Birt–Hogg–Dubé syndrome and MUTYH.
The outlook for patients with FD depends on the particular diagnostic category. Patients with chronic, progressive, generalized dysautonomia in the setting of central nervous system degeneration have a generally poor long-term prognosis. Death can occur from pneumonia, acute respiratory failure, or sudden cardiopulmonary arrest in such patients.
Parents and patients should generally be educated regarding daily eye care and early warning signs of corneal problems as well as the use of punctal cautery. This education has resulted in decreased corneal scarring and need for more aggressive surgical measures such as tarsorrhaphy, conjunctival flaps, and corneal transplants.
Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin 1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome (FCAS, formerly termed familial cold-induced urticaria), the Muckle–Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease (NOMID, also called chronic infantile neurologic cutaneous and articular syndrome or CINCA) that were originally thought to be distinct entities, but in fact share a single genetic mutation and pathogenic pathway.
Several mutations in the FGFR2 gene (a gene coding for a protein called fibroblast growth factor receptor 2, which is involved in important signaling pathways) are known to cause Beare–Stevenson cutis gyrata syndrome; however, not all patients with the condition have a mutation in their FGFR2 gene. Any alternative underlying causes are currently unidentified. The syndrome follows an autosomal dominant pattern, meaning that if one of the two available genes carries a mutation the syndrome will result. Currently, no familial histories are known (in other words, there are no reports of cases in which a parent carrying a mutation in their FGFR2 gene then propagated said mutation to his or her child).
Periodic fever syndromes (also known as autoinflammatory diseases or autoinflammatory syndromes) are a set of disorders characterized by recurrent episodes of systemic and organ-specific inflammation. Unlike autoimmune disorders such as systemic lupus erythematosus, in which the disease is caused by abnormalities of the adaptive immune system, patients with autoinflammatory diseases do not produce autoantibodies or antigen-specific T or B cells. Instead, the autoinflammatory diseases are characterized by errors in the innate immune system.
The syndromes are diverse, but tend to cause episodes of fever, joint pains, skin rashes, abdominal pains and may lead to chronic complications such as amyloidosis.
Most autoinflammatory diseases are genetic and present during childhood. The most common genetic autoinflammatory syndrome is familial Mediterranean fever, which causes short episodes of fever, abdominal pain, serositis, lasting less than 72 hours. It is caused by mutations in the MEFV gene, which codes for the protein pyrin.
Pyrin is a protein normally present in the inflammasome. The mutated pyrin protein is thought to cause inappropriate activation of the inflammasome, leading to release of the pro-inflammatory cytokine IL-1β. Most other autoinflammatory diseases also cause disease by inappropriate release of IL-1β. Thus, IL-1β has become a common therapeutic target, and medications such as anakinra, rilonacept, and canakinumab have revolutionized the treatment of autoinflammatory diseases.
However, there are some autoinflammatory diseases that are not known to have a clear genetic cause. This includes PFAPA, which is the most common autoinflammatory disease seen in children, characterized by episodes of fever, aphthous stomatitis, pharyngitis, and cervical adenitis. Other autoinflammatory diseases that do not have clear genetic causes include adult-onset Still's disease, systemic-onset juvenile idiopathic arthritis, Schnitzler syndrome, and chronic recurrent multifocal osteomyelitis. It is likely that these diseases are multifactorial, with genes that make people susceptible to these diseases, but they require an additional environmental factor to trigger the disease.
Another example that shows that autoinflamatory conditions may not be genetic in origin is found in a report published in "Nature" which shows that diet is very important in the development of such diseases. The ingestion levels of highly saturated fats and cholesterol, (high fat diet, HFD) affects the microbiota composition of the gut. Changes in the microbiota induced by a HFD are protective against the susceptibility to develop osteomyelitis (autoimmune disease) as compared with the changes induced by a low-fat diet. The changes in the microbiome of individuals under HFD showed a reduction in "Prevotella" abundance and were accompanied by significantly reduced expression levels of pro-Interleukin-1β in distant neutrophils.
May–White syndrome is a rare familial progressive myoclonus epilepsy with lipomas, deafness, and ataxia. This syndrome is probably a familial form of mitochondrial encephalomyopathy.
Wolf–Hirschhorn syndrome is a microdeletion syndrome caused by a deletion within HSA band 4p16.3 of the short arm of chromosome 4, particularly in the region of and . About 87% of cases represent a "de novo" deletion, while about 13% are inherited from a parent with a chromosome translocation. In the cases of familial translocation, there is a 2 to 1 excess of maternal transmission. Of the "de novo" cases, 80% are paternally derived. Severity of symptoms and expressed phenotype differ based on the amount of genetic material deleted. The critical region for determining the phenotype is at 4p16.3 and can often be detected through genetic testing and fluorescence in situ hybridization (FISH). Genetic testing and genetic counseling is offered to affected families.
Migraine itself is a very common disorder, occurring in 15–20% of the population. Hemiplegic migraine, be it familial or spontaneous, is less prevalent, 0.01% prevalence according to one report. Women are three times more likely to be affected than males.
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.
The cause of Goldenhar syndrome is largely unknown. However, it is thought to be multifactorial, although there may be a genetic component, which would account for certain familial patterns. It has been suggested that there is a branchial arch development issue late in the first trimester.
An increase in Goldenhar syndrome in the children of Gulf War veterans has been suggested, but the difference was shown to be statistically insignificant.
Wolf–Hirschhorn syndrome (WHS), also known as chromosome deletion Dillan 4p syndrome, Pitt–Rogers–Danks syndrome (PRDS) or Pitt syndrome, was first described in 1961 by Americans Herbert L. Cooper and Kurt Hirschhorn and, thereafter, gained worldwide attention by publications by the German Ulrich Wolf, and Hirschhorn and their co-workers, specifically their articles in the German scientific magazine "Humangenetik". It is a characteristic phenotype resulting from a partial deletion of chromosomal material of the short arm of chromosome 4 (del(4p16.3)).