Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
The aggregation of one precursor protein leads to peripheral neuropathy and/or autonomic nervous system dysfunction. These proteins include: transthyretin (ATTR, the most commonly implicated protein), apolipoprotein A1, and gelsolin.
Due to the rareness of the other types of familial neuropathies, transthyretin amyloidogenesis-associated polyneuropathy should probably be considered first.
"FAP-I" and "FAP-II" are associated with transthyretin. (Senile systemic amyloidosis [abbreviated "SSA"] is also associated with transthyretin aggregation.)
"FAP-III" is also known as "Iowa-type", and involves apolipoprotein A1.
"FAP-IV" is also known as "Finnish-type", and involves gelsolin.
Fibrinogen, apolipoprotein A1, and lysozyme are associated with a closely related condition, familial visceral amyloidosis.
Hereditary motor and sensory neuropathies are relatively common and are often inherited with other neuromuscular conditions, and these co morbidities cause an accelerated progression of the disease.
Most forms HMSN affects males earlier and more severely than females, but others show no predilection to either sex. HMSN affects all ethnic groups. With the most common forms having no racial prediliections, but other recessively inherited forms tend to impact specific ethnic groups. Onset of HMSN in most common in early childhood, with clinical effects occurring before the age of 10, but some symptoms are lifelong and progress slowly. Therefore, these symptoms do not appear until later in life.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
Those diseases understood as congenital in origin could either be specific to the ocular organ system (LHON, DOA) or syndromic (MELAS, Multiple Sclerosis). It is estimated that these inherited optic neuropathies in the aggregate affect 1 in 10,000
Of the acquired category, disease falls into further etiological distinction as arising from toxic (drugs or chemicals) or nutritional/metabolic (vitamin deficiency/diabetes) insult. It is worth mentioning that under-nutrition and toxic insult can occur simultaneously, so a third category may be understood as having a combined or mixed etiology. We will refer to this as Toxic/Nutritional Optic Neuropathy, whereby nutritional deficiencies and toxic/metabolic insults are the simultaneous culprits of visual loss associated with damage and disruption of the RGC and optic nerve mitochondria.
The severity of symptoms vary widely even for the same type of CMT. There have been cases of monozygotic twins with varying levels of disease severity, showing that identical genotypes are associated with different levels of severity (see penetrance). Some patients are able to live a normal life and are almost or entirely asymptomatic. A 2007 review stated that "Life expectancy is not known to be altered in the majority of cases".
Mononeuropathy is a type of neuropathy that only affects a single nerve. Diagnostically, it is important to distinguish it from polyneuropathy because when a single nerve is affected, it is more likely to be due to localized trauma or infection.
The most common cause of mononeuropathy is physical compression of the nerve, known as compression neuropathy. Carpal tunnel syndrome and axillary nerve palsy are examples. Direct injury to a nerve, interruption of its blood supply resulting in (ischemia), or inflammation also may cause mononeuropathy.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
Five different clinical entities have been described under hereditary sensory and autonomic neuropathies – all characterized by progressive loss of function that predominantly affects the peripheral sensory nerves. Their incidence has been estimated to be about 1 in 25,000.
All hereditary motor and sensory neuropathies are inherited. Chromosomes 17 and 1 seem to be the most common chromosomes with mutations. The disease can be inherited in an autosomal dominant, autosomal recessive or X-linked manner.
Globally diabetic neuropathy affects approximately 132 million people as of 2010 (1.9% of the population).
Diabetes is the leading known cause of neuropathy in developed countries, and neuropathy is the most common complication and greatest source of morbidity and mortality in diabetes. It is estimated that neuropathy affects 25% of people with diabetes. Diabetic neuropathy is implicated in 50–75% of nontraumatic amputations.
The main risk factor for diabetic neuropathy is hyperglycemia. In the DCCT (Diabetes Control and Complications Trial, 1995) study, the annual incidence of neuropathy was 2% per year but dropped to 0.56% with intensive treatment of Type 1 diabetics. The progression of neuropathy is dependent on the degree of glycemic control in both Type 1 and Type 2 diabetes. Duration of diabetes, age, cigarette smoking, hypertension, height, and hyperlipidemia are also risk factors for diabetic neuropathy.
Peripheral neuropathy may be classified according to the number and distribution of nerves affected (mononeuropathy, mononeuritis multiplex, or polyneuropathy), the type of nerve fiber predominantly affected (motor, sensory, autonomic), or the process affecting the nerves; e.g., inflammation (neuritis), compression (compression neuropathy), chemotherapy (chemotherapy-induced peripheral neuropathy).
The mechanisms of diabetic neuropathy are poorly understood. At present, treatment alleviates pain and can control some associated symptoms, but the process is generally progressive.
As a complication, there is an increased risk of injury to the feet because of loss of sensation (see diabetic foot). Small infections can progress to ulceration and this may require amputation.
CMT is a result of genetic mutations in a number of genes. Based on the affected gene, CMT can be categorized into types and subtypes.
The Food and Drug Administration is recommending that physicians restrict prescribing high-dose Simvastatin (Zocor, Merck) to patients, given an increased risk of muscle damage. The FDA drug safety communication stated that physicians should limit using the 80-mg dose unless the patient has already been taking the drug for 12 months and there is no evidence of myopathy.
"Simvastatin 80 mg should not be started in new patients, including patients already taking lower doses of the drug," the agency states.
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.
Hereditary sensory neuropathy type 1 is a condition characterized by nerve abnormalities in the legs and feet (peripheral neuropathy). Many people with this condition have tingling, weakness, and a reduced ability to feel pain and sense hot and cold. Some affected individuals do not lose sensation, but instead feel shooting pains in their legs and feet. As the disorder progresses, the sensory abnormalities can affect the hands, arms, shoulders, and abdomen. Affected individuals may also experience muscle wasting and weakness as they get older, but this varies widely within families.
Affected individuals typically get open sores (ulcers) on their feet or hands or infections of the soft tissue of the fingertips (whitlows) that are slow to heal. Because affected individuals cannot feel the pain of these sores, they may not seek treatment right away. Without treatment, the ulcers can become infected and may require amputation of the surrounding area.
Albeit rarely, people with hereditary sensory neuropathy type 1 may develop hearing loss caused by abnormalities of the inner ear (sensorineural hearing loss).
The signs and symptoms of hereditary sensory neuropathy type 1 typically appear during a person's teens or twenties. While the features of this disorder tend to worsen over time, affected individuals have a normal life expectancy if signs and symptoms are properly treated.
Type 1 is the most common form among the 5 types of HSAN. Its historical names include "mal perforant du pied", ulcero-mutilating neuropathy, hereditary perforating ulcers, familial trophoneurosis, familial syringomyelia, hereditary sensory radicular neuropathy, among others. This type includes a popular disease Charcot-Marie-Tooth type 2B syndrome (HMSN 2B). that is also named as HSAN sub-type 1C.
Type 1 is inherited as an autosomal dominant trait. The disease usually starts during early adolescence or adulthood. The disease is characterized by the loss of pain sensation mainly in the distal parts of the lower limbs; that is, in the parts of the legs farther away from the center of the body. Since the affected individuals cannot feel pain, minor injuries in this area may not be immediately recognized and may develop into extensive ulcerations. Once infection occurs, further complications such as progressive destruction of underlying bones may follow and may necessitate amputation. In rare cases, the disease is accompanied with nerve deafness and muscle wasting. Autonomic disturbance, if present, appears as anhidrosis, a sweating abnormality. Examinations of the nerve structure and function showed signs of neuronal degeneration such as a marked reduction in the number of myelinated fibers and axonal loss. Sensory neurons lose the ability to transmit signals, while motor neurons has reduced ability to transmit signals.
Genes related to Hereditary sensory and autonomic neuropathy Type 1:
Mutations in the SPTLC1 gene cause hereditary sensory neuropathy type 1. The SPTLC1 gene provides instructions for making one part (subunit) of an enzyme called serine palmitoyltransferase (SPT). The SPT enzyme is involved in making certain fats called sphingolipids. Sphingolipids are important components of cell membranes and play a role in many cell functions.
SPTLC1 gene mutations reduce the amount of SPTLC1 subunit that is produced and result in an SPT enzyme with decreased function. A lack of functional SPT enzyme leads to a decrease in sphingolipid production and a harmful buildup of certain byproducts. Sphingolipids are found in myelin, which is the covering that protects nerves and promotes the efficient transmission of nerve impulses. A decrease in sphingolipids disrupts the formation of myelin, causing nerve cells to become less efficient and eventually die. When sphingolipids are not made, an accumulation of toxic byproducts can also lead to nerve cell death. This gradual destruction of nerve cells results in loss of sensation and muscle weakness in people with hereditary sensory neuropathy type 1.
In industrialized nations, toxic and nutritional optic neuropathy is relatively uncommon and is primarily associated with specific medications, occupational exposures, or tobacco and alcohol abuse. However, in developing nations, nutritional optic neuropathy is much more common, especially in regions afflicted by famine. Both genders and all races are equally affected, and all ages are susceptible.
Inclusion body myositis (IBM) is an inflammatory muscle disease characterized by slowly progressive weakness and wasting of both distal and proximal muscles, most apparent in the muscles of the arms and legs. There are two types: sporadic inclusion body myositis (sIBM), which is more common, and hereditary inclusion body myopathy (hIBM).
In sporadic inclusion body myositis [MY-oh-sigh-tis], two processes, one autoimmune and the other degenerative, appear to occur in the muscle cells in parallel. The inflammation aspect is characterized by the cloning of T cells that appear to be driven by specific antigens to invade muscle fibers. The degeneration aspect is characterized by the appearance of holes in the muscle cell vacuoles, deposits of abnormal proteins within the cells and in filamentous inclusions (hence the name inclusion body myositis).
Weakness comes on slowly (over months or years) and progresses steadily and usually leads to severe weakness and wasting of arm and leg muscles. It is more common in men than women. Patients may become unable to perform activities of daily living and most require assistive devices within 5 to 10 years of symptom onset. sIBM is not considered a disorder, but the risk of serious injury due to falls is increased. One common and potentially fatal complication is dysphagia. There is no effective treatment for the disease.
sIBM is a rare yet increasingly prevalent disease and is the most common cause of inflammatory myopathy in people over age 50. Recent research from Australia indicates that the incidence of IBM varies in different populations and ethnic groups. The authors found that the current prevalence was 14.9 per million in the overall population, with a prevalence of 51.3 per million population in people over 50 years of age. As seen in these numbers, sIBM is an age-related disease – its incidence increases with age and symptoms usually begin after 50 years of age. It is the most common acquired muscle disorder seen in people over 50, although about 20% of cases display symptoms before the age of 50.
Familial amyloid polyneuropathy (FAP), also called transthyretin-related hereditary amyloidosis, transthyretin amyloidosis abbreviated also as ATTR (hereditary form), or Corino de Andrade's disease, is an autosomal dominant neurodegenerative disease. It is a form of amyloidosis, and was first identified and described by Portuguese neurologist Mário Corino da Costa Andrade, in 1952. FAP is distinct from senile systemic amyloidosis (SSA), which is not inherited, and which was determined to be the primary cause of death for 70% of supercentenarians who have been autopsied.
FAP can be ameliorated by liver transplantation.
sIBM is not inherited and is not passed on to the children of IBM patients. There are genetic features that do not directly cause IBM but that appear to predispose a person to getting IBM — having this particular combination of genes increases one's susceptibility to getting IBM. Some 67% of IBM patients have a particular combination of human leukocyte antigen genes in a section of the 8.1 ancestral haplotype in the center of the MHC class II region. sIBM is not passed on from generation to generation, although the susceptibility region of genes may be.
There are also several rare forms of hereditary inclusion body myopathy that are linked to specific genetic defects and that are passed on from generation to generation. Since these forms do not show features of muscle inflammation, they are classified as myopathies rather than forms of myositis. Because they do not display inflammation as a primary symptom, they may in fact be similar, but different diseases to sporadic inclusion body myositis. There are several different types, each inherited in different ways. See hereditary inclusion body myopathy.
A 2007 review concluded there is no indication that the genes responsible for the familial or hereditary conditions are involved in sIBM.
In 1993, A. E. Hardnig proposed to classify hereditary motor neuropathies into seven groups based on age at onset, mode of inheritance, and presence of additional features. This initial classification has since been widely adopted and expanded and currently looks as follows:
Note: Acronym "HMN" is also used interchangeably with "DHMN".
dHMN V has a pattern of autosomal dominance, meaning that only one copy of the gene is needed for the development of the disease. However, there is incomplete penetrance of this disorder, meaning that some individuals with the disease-causing mutations will not display any symptoms. Mutations on chromosome 7 have been linked to this disease. It is allelic (i.e., caused by mutations on the same gene) with Charcot–Marie–Tooth disease and with Silver’s Syndrome, a disorder also characterized by small muscle atrophy in the hands.
Another rare form of dHMN V is associated with a splicing mutation in REEP-1, a gene often associated with hereditary spastic neuroplegia.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.
Hereditary sensory and autonomic neuropathy type I (HSAN I) or hereditary sensory neuropathy type I (HSN I) is a group of autosomal dominant inherited neurological diseases that affect the peripheral nervous system particularly on the sensory and autonomic functions. The hallmark of the disease is the marked loss of pain and temperature sensation in the distal parts of the lower limbs. The autonomic disturbances, if present, manifest as sweating abnormalities.
The beginning of the disease varies between adolescence and adulthood. Since affected individuals cannot feel pain, minor wounds or blisters in the painless area may not be immediately recognized and can develop into extensive and deep foot ulcerations. Once infection occurs, the complications such as inflammation and progressive destruction of the underlying bones may follow and may require amputation of the surrounding area.
HSAN I is the most common type among the five types of HSAN. As a heterogeneous group of diseases, HSAN I can be divided into five subtypes HSAN IA-E. Most of the genes associated with the diseases have been identified. However, the molecular pathways leading to the manifestation of the diseases are not fully understood. Therefore, the potential targets for therapeutic interventions are not known. Moreover, gene-based therapies for patients with the diseases are not available to date, hence supportive care is the only treatment available for the patients.