Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Möbius syndrome results from the underdevelopment of the VI and VII cranial nerves. The VI cranial nerve controls lateral eye movement, and the VII cranial nerve controls facial expression.
The causes of Möbius syndrome are poorly understood. Möbius syndrome is thought to result from a vascular disruption (temporary loss of bloodflow) in the brain during prenatal development. There could be many reasons that a vascular disruption leading to Möbius syndrome might occur. Most cases do not appear to be genetic. However, genetic links have been found in a few families. Some maternal trauma may result in impaired or interrupted blood flow (ischemia) or lack of oxygen (hypoxia) to a developing fetus. Some cases are associated with reciprocal translocation between chromosomes or maternal illness. In the majority of cases of Möbius syndrome in which autosomal dominant inheritance is suspected, sixth and seventh cranial nerve paralysis (palsy) occurs without associated limb abnormalities.
The use of drugs and a traumatic pregnancy may also be linked to the development of Möbius syndrome. The use of the drugs misoprostol or thalidomide by women during pregnancy has been linked to the development of Möbius syndrome in some cases. Misoprostol is used to induce abortions in Brazil and Argentina as well as in the United States. Misoprostol abortions are successful 90% of the time, meaning that 10% of the time the pregnancy continues. Studies show that the use of misoprostal during pregnancy increases the risk of developing Möbius syndrome by a factor of 30. While this is a dramatic increase in risk, the incidence of Möbius syndrome without misoprostal use is estimated at one in 50000 to 100000 births (making the incidence of Möbius syndrome with misoprostol use, less than one in 1000 births). The use of cocaine (which also has vascular effects) has been implicated in Möbius syndrome.
Some researchers have suggested that the underlying problem of this disorder could be congenital hypoplasia or agenesis of the cranial nerve nuclei. Certain symptoms associated with Möbius syndrome may be caused by incomplete development of facial nerves, other cranial nerves, and other parts of the central nervous system.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
Nasodigitoacoustic syndrome, also called Keipert syndrome, is a rare congenital syndrome first described by J.A. Keipert and colleagues in 1973. The syndrome is characterized by a mishaped nose, broad thumbs and halluces (the big toes), brachydactyly, sensorineural hearing loss, facial features such as hypertelorism (unusually wide-set eyes), and developmental delay. It is believed to be inherited in an X-linked recessive manner, which means a genetic mutation causing the disorder is located on the X chromosome, and while two copies of the mutated gene must be inherited for a female to be born with the disorder, just one copy is sufficient to cause a male to be born with the disorder. Nasodigitoacoustic syndrome is likely caused by a mutated gene located on the X chromosome between positions Xq22.2–q28. The incidence of the syndrome has not been determined, but it is considered to affect less than 200,000 people in the United States, and no greater than 1 per 2,000 in Europe. It is similar to Keutel, Muenke, Rubinstein and Teunissen-Cremers syndrome.
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
Pallister-Killian does not appear to be hereditary. Some research has suggested that the presence of the extra chromosome may be linked to premeiotic mitotic errors, both maternally and paternally. Several theories regarding the mechanism of this formation have been introduced.
Urofacial Syndrome occurs due to either disruption or mutation of a gene on chromosome 10q23q24. The gene is located on a 1 centimorgan interval between D10S1433 and D10S603. Alteration of this gene leads to alteration of facial and urinary developmental fields. This gene is believed to be the HPSE2 gene. The HPSE2 gene is expressed in both the central nervous system as well as the bladder. Heparanase 2 is protein coded by exons 8 and 9 on the HPSE2 gene. This protein is believed to be altered in the case of this syndrome. Studies performed on mice indicate that HPSE2 has no enzymatic activity.
Mutations in the HPSE2 gene on chromosome 10q23q24 have been observed to cause Ochoa Syndrome. This means the defective gene responsible for the disorder is located on an autosome (chromosome 10 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The relationship between a defective HPSE2 gene and Ochoa syndrome is unclear. There is postulation that the genetic changes may lead to an abnormality in the brain region, evidence for this postulation is that the areas of the brain that control facial expression and urination are in close proximity of each other. Other hypotheses think that the defective heparanase 2 protein may lead to problems with development of the urinary tract or with muscle function in the face and bladder.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
The minimal deletion causing this syndrome has been defined as a 3 megabase region that contains the genes GPR35, GPC1 and STK25.
Almost all deletions are found to be terminal deletions at the end of chromosome 2. There is a high frequency of "de novo" deletions, but multiple cases within a single family are also observed. Equal proportions of maternally and paternally derived rearrangements were seen in Aldred's series. No common breakpoints for the deletion were identified indicating that the 2q37 rearrangement is unlikely to be mediated by non-homologous recombination and low-copy repeats. In a study of 20 patients, no clear relationship was found between clinical features and the size or position of the monosomic region.
Asymmetric crying facies (ACF), also called Cayler cardiofacial syndrome, partial unilateral facial paresis and hypoplasia of depressor angula oris muscle, is a minor congenital anomaly caused by agenesis or hypoplasia of the depressor anguli oris muscle, one of the muscles that control the movements of the lower lip. This unilateral facial weakness is first noticed when the infant cries or smiles, affecting only one corner of the mouth and occurs on the left side in nearly 80% of cases. It is associated with other birth defects in more than 50% of cases.
When the hypoplasia of the depressor anguli oris muscle is associated with congenital cardiac defects, the term 'Cayler cardiofacial syndrome' is used.
Cayler syndrome is part of 22q11.2 deletion syndrome.
It was characterized by Cayler in 1969.
Although it is possible for the birthmark and atrophy in the cerebral cortex to be present without symptoms, most infants will develop convulsive seizures during their first year of life. There is a greater likelihood of intellectual impairment when seizures are resistant to treatment. Studies do not support the widely held belief that seizure frequency early in life in patients who have SWS is a prognostic indicator.
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
2q37 monosomy is a rare genetic disorder caused by a deletion of a segment at the end of chromosome 2.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
After the last primary tooth is lost, usually around the age of twelve, final orthodontic treatment can be initiated. A patient that has not been able to close or swallow well probably will have an open bite, deficient lower-jaw growth, a narrow archform with crowded teeth, and upper anterior flaring of teeth. Orthognathic (jaw) surgery may be indicated. This should be completed in most situations before the smile surgery where the gracilis muscle is grafted to the face.
Genetic links to 13q12.2 and 1p22 have been suggested.
It is named after the German ophthalmologist Theodor Axenfeld who studied anterior segment disorders, especially those such as Rieger Syndrome and the Axenfeld Anomaly.
Axenfeld-Rieger syndrome is characterized by abnormalities of the eyes, teeth, and facial structure. Rieger Syndrome, by medical definition, is determined by the presence of malformed teeth, underdeveloped anterior segment of the eyes, and cardiac problems associated with the Axenfeld anomaly. The term "Rieger syndrome" is sometimes used to indicate an association with glaucoma. Glaucoma occurs in up to 50% of patients with Rieger Syndrome. Glaucoma develops during adolescence or late-childhood, but often occurs in infancy. In addition, a prominent Schwalbe's line, an opaque ring around the cornea known as posterior embryotoxon, may arise with hypoplasia of the iris. Below average height and stature, stunted development of the mid-facial features and mental deficiencies may also be observed in patients.
Worster-Drought syndrome is a form of congenital suprabulbar paresis that occurs in some children with cerebral palsy. It is caused by inadequate development of the corticobulbar tracts and causes problems with the mouth and tongue including impaired swallowing. A similar syndrome in adults is called anterior opercular syndrome.
A 1986 study of a family in which multiple members had Worster-Drought Syndrome suggested it might be hereditary.
A 2000 review of cases classified Worster-Drought Syndrome as a form of cerebral palsy, caused by early damage to the brain, but identified no obvious causes during gestation or birth and found some families with a history of the condition.
The syndrome was named after Cecil Charles Worster-Drought, the doctor who discovered it in 1956.
The condition is also known by various other names:
- Lateral facial dysplasia
- First and second branchial arch syndrome
- Oral-mandibular-auricular syndrome
- Otomandibular dysostosis
- Craniofacial microsomia
Pallister–Killian syndrome (also tetrasomy 12p mosaicism or Pallister mosaic aneuploidy syndrome) is an extremely rare genetic disorder occurring in humans. Pallister-Killian occurs due to the presence of the anomalous extra isochromosome 12p, the short arm of the twelfth chromosome. This leads to the development of tetrasomy 12p. Because not all cells have the extra isochromosome, Pallister-Killian is a mosaic condition (more readily detected in skin fibroblasts).
It was first described by Philip Pallister in 1977 and further researched by Maria Teschler-Nicola and Wolfgang Killian in 1981.
Presence of inner ear abnormalities lead to Delayed gross development of child because of balance impairment and profound deafness which increases the risk of trauma and accidents.
- Incidence of accidents can be decreased by using visual or vibrotactile alarm systems in homes as well as in schools.
- Anticipatory education of parents, health providers and educational programs about hazards can help.
The molecular genetics of Axenfeld syndrome are poorly understood, but centers on three genes identified by cloning of chromosomal breakpoints from patients.
This disorder is inheritable as an autosomal dominant trait, which means the defective gene is located on an autosome, and only one copy of the gene is sufficient to cause the disorder when inherited from a parent who has the disorder. As shown in the diagram, this gives a 50/50 chance of offspring inheriting the condition from an affected parent.
Recurrence in siblings and apparent transmission from parent to child has long suggested a genetic defect with autosomal dominant inheritance and variable expression. Mutations in the Ras/mitogen activated protein kinase signaling pathways are known to be responsible for ~70% of NS cases.
A person with NS has up to a 50% chance of transmitting it to their offspring. The fact that an affected parent is not always identified for children with NS suggests several possibilities:
1. Manifestations could be so subtle as to go unrecognized (variable expressivity)
2. NS is heterogeneous, comprising more than one similar condition of differing causes, and some of these may not be inherited.
3. A high proportion of cases may represent new, sporadic mutations.
Heterozygous mutations in "NRAS", "HRAS", "BRAF", "SHOC2", "MAP2K1", "MAP2K2", and "CBL" have also been associated with a smaller percentage of NS and related phenotypes.
A condition known as "neurofibromatosis-Noonan syndrome" is associated with neurofibromin.
The blood vessel formations associated with SWS start in the fetal stage. Around the sixth week of development, a network of nerves develops around the area that will become a baby’s head. Normally, this network goes away in the ninth week of development. In babies with SWS due to mutation of gene GNAQ, this network of nerves doesn’t go away. This reduces the amount of oxygen and blood flowing to the brain, which can affect brain tissue development.