Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The estimated detection rate of AVM in the US general population is 1.4/100,000 per year. This is approximately one fifth to one seventh the incidence of intracranial aneurysms. An estimated 300,000 Americans have AVMs, of whom 12% (approximately 36,000) will exhibit symptoms of greatly varying severity.
Can occur due to autosomal dominant diseases, such as hereditary hemorrhagic telangiectasia.
10-15% of intracranial AV malformations are DAVFs. There is a higher preponderance in females (61-66%), and typically patients are in their fourth or fifth generation of life. DAVFs are rarer in children.
Vein of Galen malformations are devastating complications. Studies have shown that 77% of untreated cases result in mortality. Even after surgical treatment, the mortality rate remains as high as 39.4%. Most cases occur during infancy when the mortality rates are at their highest. Vein of Galen malformations are a relatively unknown affliction, attributed to the rareness of the malformations. Therefore, when a child is diagnosed with a faulty Great Cerebral Vein of Galen, most parents know little to nothing about what they are dealing with. To counteract this, support sites have been created which offer information, advice, and a community of support to the afflicted (, ).
The main risk is intracranial hemorrhage. This risk is difficult to quantify since many patients with asymptomatic AVMs will never come to medical attention. Small AVMs tend to bleed more often than do larger ones, the opposite of cerebral aneurysms. If a rupture or bleeding incident occurs, the blood may penetrate either into the brain tissue (cerebral hemorrhage) or into the subarachnoid space, which is located between the sheaths (meninges) surrounding the brain (subarachnoid hemorrhage). Bleeding may also extend into the ventricular system (intraventricular hemorrhage). Cerebral hemorrhage appears to be most common.
One long-term study (mean follow up greater than 20 years) of over 150 symptomatic AVMs (either presenting with bleeding or seizures) found the risk of cerebral hemorrhage to be approximately 4% per year, slightly higher than the 2-3% seen in other studies. A simple, rough approximation of a patient's lifetime bleeding risk is 105 - (patient age in years), assuming a 3% bleed risk annually. For example, a healthy 30-year-old patient would have approximately a 75% lifetime risk of at least one bleeding event. Ruptured AVMs are a significant source or morbidity and mortality; post rupture, as many as 29% of patients will die, and only 55% will be able to live independently.
The annual new detection rate incidence of AVMs is approximately 1 per 100,000 a year. The point prevalence in adults is approximately 18 per 100,000. AVMs are more common in males than females, although in females pregnancy may start or worsen symptoms due the increase in blood flow and volume it usually brings. There is a significant preponderance (15-20%) of AVM in patients with hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome).
The complications that are usually associated with vein of Galen malformations are usually intracranial hemorrhages. Over half the patients with VGAM have a malformation that cannot be corrected. Patients frequently die in the neonatal period or in early infancy.
The prevalence of congenital Chiari I malformation, defined as tonsilar herniations of 3 to 5 mm or greater, was previously believed to be in the range of one per 1000 births, but is likely much higher. Women are three times more likely than men to have a congenital Chiari malformation. Type II malformations are more prevalent in people of Celtic descent. A study using upright MRI found cerebellar tonsillar ectopia in 23% of adults with headache from motor-vehicle-accident head trauma. Upright MRI was more than twice as sensitive as standard MRI, likely because gravity affects cerebellar position.
Cases of congenital Chiari malformation may be explained by evolutionary and genetic factors. Typically, an infant's brain weighs around 400g at birth and triples to 1100-1400g by age 11. At the same time the cranium triples in volume from 500 cm to 1500 cm to accommodate the growing brain. During human evolution, the skull underwent numerous changes to accommodate the growing brain. The evolutionary changes included increased size and shape of the skull, decreased basal angle and basicranial length. These modifications resulted in significant reduction of the size of the posterior fossa in modern humans. In normal adults, the posterior fossa comprises 27% of the total intracranial space, while in adults with Chiari Type I, it is only 21%. If a modern brain is paired with a less modern skull, the posterior fossa may be too small, so that the only place where the cerebellum can expand is the foramen magnum, leading to development of Chiari Type I. H. neanderthalensis had platycephalic (flattened) skull. Some cases of Chiari are associated with platybasia (flattening of the skull base).
Manual carotid self compression is a controversial treatment for DAVF. Patients using this method are told to compress the carotid with the opposite hand for approximately 10 minutes daily, and gradually increasing the frequency and duration of compression. Currently, it is unclear whether this method is an effective therapy.
The most widely accepted pathophysiological mechanism by which Chiari type I malformations occur is by a reduction or lack of development of the posterior fossa as a result of congenital or acquired disorders. Congenital causes include hydrocephalus, craniosynostosis (especially of the lambdoid suture), hyperostosis (such as craniometaphyseal dysplasia, osteopetrosis, erythroid hyperplasia), X-linked vitamin D-resistant rickets, and neurofibromatosis type I. Acquired disorders include space occupying lesions due to one of several potential causes ranging from brain tumors to hematomas.
Head trauma may cause cerebellar tonsillar ectopia, possibly because of dural strain. Additionally, ectopia may be present but asymptomatic until whiplash causes it to become symptomatic. Posterior fossa hypoplasia causes reduced cerebral and spinal compliance.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
The birth defect affects men and women equally, and is not limited to any racial group. It is not certain if it is genetic in nature, although testing is ongoing. There is some evidence that it may be associated with a translocation at t(8;14)(q22.3;q13). Some researchers have suggested AGGF1 has an association.
Vascular malformation is a blood vessel abnormality. There are many types, but the most common is arteriovenous malformation.
It may cause aesthetic problems as it has a growth cycle and can continue to grow throughout life. This is also known as Vascular giantism or lymphangiomas.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Bonnet–Dechaume–Blanc syndrome results mainly from arteriovenous malformations. These malformations are addressed previously in the article, under “Signs and Symptoms.” Due to lack of research, it is difficult to provide a specific mechanism for this disorder. However, a number of examinations, mentioned under “Diagnosis,” can be performed on subjects to investigate the disorder and severity of the AVMs.
Numerous possible risk factors have been identified, including gestational diabetes, transplacental infections (the "TORCH complex"), first trimester bleeding, and a history of miscarriage. As well, the disorder is found twice as often in female babies. However, there appears to be no correlation between HPE and maternal age.
There is evidence of a correlation between HPE and the use of various drugs classified as being potentially unsafe for pregnant and lactating mothers. These include insulin, birth control pills, aspirin, lithium, thorazine, retinoic acid, and anticonvulsants. There is also a correlation between alcohol consumption and HPE, along with nicotine, the toxins in cigarettes and toxins in cigarette smoke when used during pregnancy.
Various classifications have been proposed for CCF. They may be divided into low-flow or high-flow, traumatic or spontaneous and direct or indirect. The traumatic CCF typically occurs after a basal skull fracture. The spontaneous dural cavernous fistula which is more common usually results from a degenerative process in older patients with systemic hypertension
and atherosclerosis. Direct fistulas occur when the Internal Carotid artery (ICA) itself fistulizes into the Cavernous sinus whereas indirect is when a branch of the ICA or External Carotid artery (ECA) communicates with the cavernous sinus.
A popular classification divides CCF into four varieties depending on the type of arterial supply.
Congenital diaphragmatic hernia has a mortality rate of 40–62%, with outcomes being more favorable in the absence of other congenital abnormalities. Individual rates vary greatly dependent upon multiple factors: size of hernia, organs involved, additional birth defects, and/or genetic problems, amount of lung growth, age and size at birth, type of treatments, timing of treatments, complications (such as infections) and lack of lung function.
The radiocephalic arteriovenous fistula (RC-AVF) is a shortcut between cephalic vein and radial artery at the wrist. It is the recommended first choice for hemodialysis access. Possible underlying causes for failure are stenosis and thrombosis especially in diabetics and those with low blood flow such as due to narrow vessels, arteriosclerosis and advanced age. Reported patency of fistulae after 1 year is about 62.5%.
The syndrome was first described in 1943 and believed to be associated with racemose hemangiomatosis of the retina and arteriovenous malformations of the brain. It is non-hereditary and belongs to phakomatoses that do not have a cutaneous (pertaining to the skin) involvement. This syndrome can affect the retina, brain, skin, bones, kidney, muscles, and the gastrointestinal tract.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Carotid cavernous fistulae may form following closed or penetrating head trauma, surgical damage, rupture of an intracavernous aneurysm, or in association with connective tissue disorders, vascular diseases and dural fistulas.
There is disagreement as to how cases of KTS should be classified if there is an arteriovenous fistula present. Although several authorities have suggested that the term Parkes-Weber syndrome is applied in those cases, ICD-10 currently uses the term "Klippel–Trénaunay–Weber syndrome".
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).