Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The facial nucleus itself can be affected by infarcts of the pontine arteries.
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
The number of new cases of Bell's palsy is about 20 per 100,000 population per year. The rate increases with age. Bell’s palsy affects about 40,000 people in the United States every year. It affects approximately 1 person in 65 during a lifetime.
A range of annual incidence rates have been reported in the literature: 15, 24, and 25–53 (all rates per 100,000 population per year). Bell’s palsy is not a reportable disease, and there are no established registries for people with this diagnosis, which complicates precise estimation.
The efficacy of acupuncture remains unknown because the available studies are of low quality (poor primary study design or inadequate reporting practices). There is very tentative evidence for hyperbaric oxygen therapy in severe disease.
The origins of the vast majority of congenital oculomotor palsies are unknown, or idiopathic to use the medical term. There is some evidence of a familial tendency to the condition, particularly to a partial palsy involving the superior division of the nerve with an autosomal recessive inheritance. The condition can also result from aplasia or hypoplasia of one or more of the muscles supplied by the oculomotor nerve. It can also occur as a consequence of severe birth trauma.
Klumpke's paralysis is a form of paralysis involving the muscles of the forearm and hand, resulting from a brachial plexus injury in which the eighth cervical (C8) and first thoracic (T1) nerves are injured either before or after they have joined to form the lower trunk. The subsequent paralysis affects, principally, the intrinsic muscles of the hand (notably the interossei, thenar and hypothenar muscles) and the flexors of the wrist and fingers (notably flexor carpi ulnaris and ulnar half of the flexor digitorum profundus). Forearm pronators and wrist flexors may be involved, as may dilators of the iris and elevators of the eyelid (both of which may be seen in the case of associated Horner's syndrome). The classic presentation of Klumpke's palsy is the “claw hand” where the forearm is supinated and the wrist and fingers are flexed. If Horner syndrome is present, there is miosis (constriction of the pupils) in the affected eye.
The injury can result from difficulties in childbirth. The most common aetiological mechanism is caused by a traumatic vaginal delivery. The risk is greater when the mother is small or when the infant is of large weight. Risk of injury to the lower brachial plexus results from traction on an abducted arm, as with an infant being pulled from the birth canal by an extended arm above the head or with someone catching himself by a branch as he falls from a tree. Lower brachial plexus injuries should be distinguished from upper brachial plexus injuries, which can also result from birth trauma but give a different syndrome of weakness known as Erb's palsy.
Other trauma, such as motorcycle accidents, that have similar spinal cord injuries to C-8 & T-1, also show the same symptom's of Klumpke's paralysis.
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Oculomotor palsy can arise as a result of a number of different conditions. Non traumatic pupil-sparing oculomotor nerve palsies are often referred to as a 'medical third' with those affecting the pupil being known as a 'surgical third'.
The incidence of hemifacial spasm is approximately 0.8 per 100,000 persons. Hemifacial spasm is more prevalent among females over 40 years of age. The estimated prevalence for women is 14.5 per 100,000 and 7.4 per 100,000 in men. Prevalence for hemifacial spasm increase with age, reaching 39.7 per 100,000 for those aged 70 years and older. One study divided 214 hemifacial patients based on the cause of the disease. The patients who had a compression in the facial nerve at the end of the brain stem as the primary hemifacial spasm and patients who had peripheral facial palsy or nerve lesion due to tumors, demyelination, trauma, or infection as secondary hemifacial spasm. The study found that 77% of hemifacial spasm is due to primary hemifacial spasm and 23% is due to secondary hemifacial spasm. The study also found both sets of patients to share similar age at onset, male to female ratios, and similar affected side. Another study with 2050 patients presented with hemifacial spasm between 1986 and 2009, only 9 cases were caused by a cerebellopontine angle syndrome, an incidence of 0.44%.
Fourth cranial nerve palsy also known as Trochlear nerve palsy, is a condition affecting Cranial Nerve 4 (IV), the Trochlear Nerve, which is one of the Cranial Cranial Nerves that causes weakness or paralysis to the Superior Oblique Muscle that it innervates. This condition often causes vertical or near vertical double vision as the weakened muscle prevents the eyes from moving in the same direction together.
Because the fourth cranial nerve is the thinnest and has the longest intracranial course of the cranial nerves, it is particularly vulnerable to traumatic injury.
To compensate for the double-vision resulting from the weakness of the superior oblique, patients characteristically tilt their head down and to the side opposite the affected muscle.
When present at birth, it is known as congenital fourth nerve palsy.
Klumpke Palsy is listed as a 'rare disease' by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH). This means that Klumpke palsy, or a subtype of Klumpke palsy, affects fewer than 200,000 people in the US population.
The most common cause of diplegia in the legs is Cerebral Palsy. Paralysis of the legs may also be caused by trauma, injury, or genetics but this is very rare
Because the nerve emerges near the bottom of the brain, it is often the first nerve compressed when there is any rise in intracranial pressure. Different presentations of the condition, or associations with other conditions, can help to localize the site of the lesion along the VIth cranial nerve pathway.
The most common causes of VIth nerve palsy in adults are:
- More common: Vasculopathic (diabetes, hypertension, atherosclerosis), trauma, idiopathic.
- Less common: Increased intracranial pressure, giant cell arteritis, cavernous sinus mass (e.g. meningioma, Brain stem Glioblastoma aneurysm, metastasis), multiple sclerosis, sarcoidosis/vasculitis, postmyelography, lumbar puncture, stroke (usually not isolated), Chiari Malformation, hydrocephalus, intracranial hypertension, tuberculosis meningitis.
In children, Harley reports typical causes as traumatic, neoplastic (most commonly brainstem glioma), as well as idiopathic. Sixth nerve palsy causes the eyes to deviate inward (see: Pathophysiology of strabismus). Vallee et al. report that benign and rapidly recovering isolated VIth nerve palsy can occur in childhood, sometimes precipitated by ear, nose and throat infections.
The cause of PBP is unknown. One form of PBP is found to occur within patients that have a CuZn-superoxide dismutase (SOD1) mutation. Progressive bulbar palsy patients that have this mutation are classified with FALS patients, Familial ALS (FALS) accounts for about 5%-10% of all ALS cases and is caused by genetic factors. Within these, about 20-25% are linked to the SOD1 mutation. It is not currently known if and how the decreased SOD1 activity contributes to Progressive Bulbar Palsy or FALS, and studies are being done in patients and transgenic mice to help further understand the impact of this gene on the disease.
A case study was done on a 42-year-old woman who complained of muscle weakness 10 months prior to admission in the hospital. Upon neurological examination, the patient showed muscle atrophy, fasciculation in all limbs and decreased deep tendon reflexes. The patient’s older brother, father, and paternal uncle had previously all died of ALS or an ALS type syndrome. The patient developed Progressive Bulbar Palsy, became dependent on a respirator, and had two episodes of cardiac arrest. The patient died from pneumonia two years after the onset of the disease. After studying the patient, it was found that the patient had a two base pair deletion in the 126th codon in exon 5 of the SOD1 gene. This mutation produced a frameshift mutation, which led to a stop codon at position 131. SOD1 activity was decreased by about 30%. The patient’s histological examination showed severe reduction in lower motor neurons. Upon further study, this case proved to be important because it demonstrated that SOD1 mutations might not effect steady neuropathological changes, and that environmental and genetic factors might affect the phenotype of the SOD1 mutations.
The muscle spasticity can cause gait patterns to be awkward and jerky. The constant spastic state of the muscle can lead to bone and tendon deformation, further complicating the patient's mobility. Many patients with spastic hemiplegia are subjected to canes, walkers and even wheelchairs. Due to the decrease in weight bearing, patients are at a higher risk of developing osteoporosis. An unhealthy weight can further complicate mobility. Patients with spastic hemiplegia are a high risk for experiencing seizures. Oromotor dysfunction puts patients at risk for aspiration pneumonia. Visual field deficits can cause impaired two-point discrimination. Many patients experience the loss of sensation in the arms and legs on the affected side of the body. Nutrition is essential for the proper growth and development for a child with spastic hemiplegia.
The incidence of cerebral palsy has increased in the past 40 years. It has been estimated that in the United States cerebral palsy occurs in 4 out every 1000 births. Of these births about 20–30% of them have spastic hemiplegia. Spasticity overall, is the more common type of cerebral palsy, whereas as non-spastic cerebral palsy is less common. Studies show that spastic type cerebral palsy is on the rise, and the occurrence of diplegia type is decreasing. The prevalence of cerebral palsy is higher in areas of low socioeconomic status. This could potentially be because cerebral palsy incidence increases as birth weight decreases.
In the industrialized world, the incidence of overall cerebral palsy, which includes but is not limited to spastic diplegia, is about 2 per 1000 live births. Thus far, there is no known study recording the incidence of CP in the overall nonindustrialized world. Therefore, it is safe to assume that not all spastic CP individuals are known to science and medicine, especially in areas of the world where healthcare systems are less advanced. Many such individuals may simply live out their lives in their local communities without any medical or orthopedic oversight at all, or with extremely minimal such treatment, so that they are never able to be incorporated into any empirical data that orthopedic surgeons or neurosurgeons might seek to collect. It is shocking to note that—as with people with physical disability overall—some may even find themselves in situations of institutionalization, and thus barely see the outside world at all.
From what "is" known, the incidence of spastic diplegia is higher in males than in females; the Surveillance of Cerebral Palsy in Europe (SCPE), for example, reports a M:F ratio of 1.33:1. Variances in reported rates of incidence across different geographical areas in industrialized countries are thought to be caused primarily by discrepancies in the criteria used for inclusion and exclusion.
When such discrepancies are taken into account in comparing two or more registers of patients with cerebral palsy and also the extent to which children with mild cerebral palsy are included, the incidence rates still converge toward the average rate of 2:1000.
In the United States, approximately 10,000 infants and babies are born with CP each year, and 1200–1500 are diagnosed at preschool age when symptoms become more obvious. It is interesting to note that those with extremely mild spastic CP may not even be aware of their condition until much later in life: Internet chat forums have recorded men and women as old as 30 who were diagnosed only recently with their spastic CP.
Overall, advances in care of pregnant mothers and their babies has not resulted in a noticeable decrease in CP; in fact, because medical advances in areas related to the care of premature babies has resulted in a greater survival rate in recent years, it is actually "more" likely for infants with cerebral palsy to be born into the world now than it would have been in the past. Only the introduction of quality medical care to locations with less-than-adequate medical care has shown any decreases in the incidences of CP; the rest either have shown no change or have actually shown an increase. The incidence of CP increases with premature or very low-weight babies regardless of the quality of care.
Progressive Bulbar Palsy is slow in onset, with symptoms starting in most patients around 50–70 years of age. PBP has a life expectancy typically between 6 months and 3 years from onset of first symptoms. It is subtype of the Motor Neurone Diseases (MND) accounting for around 1 in 4 cases. Amyotrophic lateral sclerosis (ALS) is another sub-type. Pure PBP without any EMG or clinical evidence of abnormalities in the legs or arms is possible, albeit extremely rare. Moreover, about twenty-five percent of patients with PBP eventually develop the widespread symptoms common to ALS.
Approximately 2-2.5 per thousand children born in the western world have cerebral palsy, with increasing incidence in twin and premature births. Ataxic cerebral palsy accounts for 5 to 10% of all cases. The cause of cerebral palsy, in particular its ataxic subtype is unknown, but thought to be due to malformation or damage in the cerebellum and its many connections. The majority of cases that present malformation of the cerebellum are congenital, however acquired ataxic cerebral palsy can result from meningitis, trauma, birth complications, and encephalopathies (septic, acute, disseminated, and toxic). In addition, maternal viral infections may cause damage to the fetal brain due to increase in inflammatory cytokines produced during infection. Brain injury can occur during prenatal, perinatal, or postnatal periods. Most cases of cerebral palsy, approximately 80%, are acquired prenatally from unknown causes. Incidence increases with decreasing gestational period—fewer than 32 weeks of gestation and birth weight less than 5 Ib 8 oz or 2500g.
There are several ways of getting diplegia in the arms. It is very common for people with Cerebral Palsy to have diplegia of the arms. Although most people with Cerebral Palsy have diplegia in their legs, some people have diplegia in their arms. Other ways of getting paralysis of both arms is through a traumatic event or injury.
Three theories exist to explain the facial nerve dysfunction found in hemifacial spasm. The first proposed theory is ephaptic transmission, which is electrical activity crossing from one demyelinated neuron to another resulting in a false synapse. The second theory involves abnormal activity of axons at the facial nerve root end zone secondary to compressive damage/demyelination.
The third theory or "Kindling theory" involves increased excitability of the facial nerve nucleus due to feedback from a damaged facial nerve.
It is generally accepted as compression of the facial nerve by vessels of the posterior circulation. In detail compression of the seventh cranial nerve by a dolichoectatic (a distorted, dilated, and elongated) vertebral artery is accepted to be the general cause of hemifacial spasm. Less than 1% of cases are caused by tumor. Hemifacial spasm is much more common in some Asian populations.
Several families with hemifacial spasm have been reported, suggesting a genetic etiology or predisposition in some cases. There appears to be an autosomal dominant pattern of inheritance in these families with low penetrance, and except for a younger age at onset, the clinical features overlap with the idiopathic cases.Evaluation of single-nucleotide polymorphisms in genes related to vascular change causing compression of blood vessles did not show an association with hemifacial spasm. Clarifying the role of genetic susceptibility in hemifacial spasm may help to better understand the pathogenesis of this disease.
In some cases, spastic cerebral palsy is caused by genetic factors.
The genetic factors for spastic cerebral palsy include:
Although it has its origins in a brain injury, spastic CP can largely be thought of as a collection of orthopaedic and neuromuscular issues because of how it manifests symptomatically over the course of the person's lifespan. It is therefore not the same as "brain damage" and it need not be thought of as such. Spastic quadriplegia in particular, especially if it is combined with verbal speech challenges and strabismus, may be misinterpreted by the general population as alluding to cognitive dimensions to the disability atop the physical ones, but this is false; the intelligence of a person with any type of spastic CP is unaffected by the condition "of the spasticity itself".
In spastic cerebral palsy in children with low birth weights, 25% of children had hemiplegia, 37.5% had quadriplegia, and 37.5% had diplegia.
Almost all cases of synkinesis develop as a sequel to nerve trauma (the exception is when it is congenitally acquired as in Duane-Retraction Syndrome and Marcus Gunn phenomenon). Trauma to the nerve can be induced in cases such as surgical procedures, nerve inflammation, neuroma
, and physical injury.
About 2% of all CP cases are inherited, with glutamate decarboxylase-1 being one of the possible enzymes involved. Most inherited cases are autosomal recessive.