Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A recent study estimated that from 2002-2003 there were 27,152 injuries in the United States related to the wearing of eyeglasses. The same study concluded that sports-related injuries due to eyeglasses wear were more common in those under the age of 18 and that fall-related injuries due to eyeglasses wear were more common in those aged 65 or more. Although eyeglasses-related injuries do occur, prescription eyeglasses and non-prescription sunglasses have been found to "offer measurable protection which results in a lower incidence of severe eye injuries to those wearing [them]".
In India study conducted by Dr.Shukla, injuries are found more in n males(81%).This is true for both rural and urban population but in 0-10 age group, the difference between males and females is less.Females account for 28% injuries in this age group.However, in sedentary workers, farmers, labourers and industrial workers the male % is as high as 95%.Chemical injuries are the comments cause of bilateral injuries in the eye .
Multiple complications are known to occur following eye injury: corneal scarring, hyphema, iridodialysis, post-traumatic glaucoma, uveitis cataract, vitreous hemorrhage and retinal detachment. The complications risk is high with retinal tears, penetrating injuries and severe blunt trauma.
Some of the adverse outcomes associated with intra-operative injuries include:
- Increased length of stay. This is due to ophthalmology consults required, associated infections and treatment.
- Increased costs. This is due to increased length of stay, cost of treating the complications.
- Pain and discomfort for the patient. Corneal abrasions are extremely painful for the patient and the treatment consists of drops and ointments applied in the eye which may cause further discomfort for the patient.
The incidence of eye injuries during general anaesthesia has been studied, and different methods of eye protection have been compared.
If tape is used to hold the eyes closed, ocular injury occurs during 0.1- 0.5% of general anaesthetics, and is usually corneal in nature.
When eyes are untaped during general anaesthesia, the incidence of ocular injury has been reported to be as high as 44%.
Intraoperative eye injuries account for 2% of medico-legal claims against anaesthetists in Australia and United Kingdom
and 3% in the USA.
Visual outcomes for patients with ocular trauma due to blast injuries vary, and prognoses depend upon the type of injury sustained. The majority of poor visual outcomes arise from perforating injuries: only 21% of patients with perforating injuries with pre-operative light perception had a final best-corrected visual acuity (BCVA) better than 20/200. Collectively, patients who experienced choroidal hemorrhage, perforated or penetrated globes, retinal detachment, traumatic optic neuropathy, and subretinal macular hemorrhage carried the highest incidence rates of BCVAs worse than 20/200. Reports from Operation Iraqi Freedom (OIF) indicate that 42% of soldiers with globe injuries of any kind had a BCVA greater than or equal to 20/40 six months after injury, and soldiers with intraocular foreign bodies (IOFBs) retained 20/40 or better vision in 52% of studied cases.
Globe perforation, oculoplastic intervention, and neuro-ophthalmic injuries contribute significantly to reported poor visual outcomes. 21% of tertiary centers treating patients exposed to blast trauma reported traumatic optic neuropathy (TON) in their patients, although avulsion of the optic nerve and TON were reported in only 3% of combat injuries. In the event that a victim of globe penetrating trauma cannot perceive any light within two weeks of surgical intervention, the ophthalmologist may choose to enucleate as a preventative measure against sympathetic ophthalmia. However, this procedure is extremely rare, and current reports indicate that only one soldier in OIF has undergone enucleation in a tertiary care facility to prevent sympathetic ophthalmia.
In the United States, chemical eye injuries most commonly occur among working-age adults. A 2016 analysis of emergency department visits from 2010-2013 reported over 36,000 visits annually for chemical burns to the eye, with a median age at presentation of 32 years. By individual year of age, 1- and 2-year-old children have the highest incidence of these injuries, with rates approximately 50% higher than the highest-risk adult group (25 years), and 13 times higher than the rate among 7-year-olds. Further research identified laundry detergent pods as a major source of injury among small children.
Prevention of ocular trauma is most effective when soldiers wear polycarbonate eye armor correctly in the battlefield. For Operation Iraqi Freedom and Operation Enduring Freedom, the United States Military have made Ballistic Laser Protective Spectacles (BLPS), Special Protective Eyewear Cylindrical System (SPECS), and Sun/Wind/Dust Goggles (SWDG) available to combatants and associated personnel. These forms of eye protection are available in non-prescription and prescription lenses, and their use has been made mandatory at all times when soldiers are in areas of potential conflict. Despite their proven record of protection against secondary blast trauma, soldier compliance remains low: 85% of soldiers afflicted ocular trauma in the first year of OEF were not wearing their protective lenses at the time of detonation. While 41% of soldiers could not recall whether or not they were wearing eye protection at the time of detonation, 17% of casualties were wearing eye protection while 26% of casualties were not. Among this group, the poorest visual prognoses were documented in individuals who did not wear eye protection. The lack of compliance has been attributed to complaints about comfort, stylishness, and “misting” of the lenses when in the field. BLPS and SPECS offer the same line of protection against secondary trauma as the SWD goggles, and these lenses may overcome the complaints many soldiers have with their military-issue goggles.
Any intense exposure to UV light can lead to photokeratitis. Common causes include welders who have failed to use adequate eye protection such as an appropriate welding helmet or welding goggles. This is termed "arc eye", while photokeratitis caused by exposure to sunlight reflected from ice and snow, particularly at elevation, is commonly called "snow blindness". It can also occur due to using tanning beds without proper eyewear. Natural sources include bright sunlight reflected from snow or ice or, less commonly, from sea or sand. Fresh snow reflects about 80% of the UV radiation compared to a dry, sandy beach (15%) or sea foam (25%). This is especially a problem in polar regions and at high altitudes, as with every thousand feet (approximately 305 meters) of elevation (above sea level), the intensity of UV rays increases by four percent.
A black eye, periorbital hematoma, or shiner, is bruising around the eye commonly due to an injury to the face rather than to the eye. The name is given due to the color of bruising. The so-called black eye is caused by bleeding beneath the skin and around the eye. Sometimes a black eye could get worse if not referring to a doctor after a few months, indicating a more extensive injury, even a skull fracture, particularly if the area around both eyes is bruised (raccoon eyes), or if there has been a prior head injury.
Although most black eye injuries are not serious, bleeding within the eye, called a hyphema, is serious and can reduce vision and damage the cornea. In some cases, abnormally high pressure inside the eyeball (ocular hypertension) can also result.
Unless there is actual trauma to the eye itself (see below), extensive medical attention is generally not needed.
Applying an ice pack will keep down swelling and reduce internal bleeding by constricting the capillaries. Additionally, analgesic drugs (painkillers) can be administered to relieve pain.
An anecdotal remedy for a black eye involves the administering of raw meat to treat the condition - Research on this treatment has yet to find any evidence of this treatment being effective.
Corneal abrasions are generally a result of trauma to the surface of the eye. Common causes include being poked by a finger, walking into a tree branch, and wearing old contact lenses. A foreign body in the eye may also cause a scratch if the eye is rubbed.
Injuries can also be incurred by "hard" or "soft" contact lenses that have been left in too long. Damage may result when the lenses are removed, rather than when the lens is still in contact with the eye. In addition, if the cornea becomes excessively dry, it may become more brittle and easily damaged by movement across the surface. Soft contact lens wear overnight has been extensively linked to gram negative keratitis (infection of the cornea) particularly by a bacterium known as "Pseudomonas aeruginosa" which forms in the eye's biofilm as a result of extended soft contact lens wear. When a corneal abrasion occurs either from the contact lens itself or another source, the injured cornea is much more susceptible to this type of bacterial infection than a non-contact lens user's would be. This is an optical emergency as it is sight (in some cases eye) threatening. Contact lens wearers who present with corneal abrasions should never be pressure patched because it has been shown through clinical studies that patching creates a warm, moist dark environment that can cause the cornea to become infected or cause an existing infection to be greatly accelerated on its destructive path.
Corneal abrasions are also a common and recurrent feature in people who suffer specific types of corneal dystrophy, such as lattice corneal dystrophy. Lattice dystrophy gets its name from an accumulation of amyloid deposits, or abnormal protein fibers, throughout the middle and anterior stroma. During an eye examination, the doctor sees these deposits in the stroma as clear, comma-shaped overlapping dots and branching filaments, creating a lattice effect. Over time, the lattice lines will grow opaque and involve more of the stroma. They will also gradually converge, giving the cornea a cloudiness that may also reduce vision. In some people, these abnormal protein fibers can accumulate under the cornea's outer layer—the epithelium. This can cause erosion of the epithelium. This condition is known as recurrent epithelial erosion. These erosions: (1) Alter the cornea's normal curvature, resulting in temporary vision problems; and (2) Expose the nerves that line the cornea, causing severe pain. Even the involuntary act of blinking can be painful.
Boehm Syndrome defines erosion events that occur only during periods of sleep.
Photokeratitis can be prevented by using sunglasses or eye protection that transmits 5–10% of visible light and absorbs almost all UV rays. Additionally, these glasses should have large lenses and side shields to avoid incidental light exposure. Sunglasses should always be worn, even when the sky is overcast, as UV rays can pass through clouds.
The Inuit, Yupik, and other Arctic peoples carved snow goggles from materials such as driftwood or caribou antlers to help prevent snow blindness. Curved to fit the user's face with a large groove cut in the back to allow for the nose, the goggles allowed in a small amount of light through a long thin slit cut along their length. The goggles were held to the head by a cord made of caribou sinew.
In the event of missing sunglass lenses, emergency lenses can be made by cutting slits in dark fabric or tape folded back onto itself. The "SAS Survival Guide" recommends blackening the skin underneath the eyes with charcoal (as the ancient Egyptians did) to avoid any further reflection.
Corneal abrasion is a scratch to the surface of the cornea of the eye. Symptoms include pain, redness, light sensitivity, and a feeling like a foreign body is in the eye. Most people recover completely within three days.
Most cases are due to minor trauma to the eye such as that which can occur with contact lens use or from fingernails. About 25% of cases occur at work. Diagnosis is often by slit lamp examination after fluorescein dye has been applied. More significant injuries like a corneal ulcer, globe rupture, recurrent erosion syndrome, and a foreign body within the eye should be ruled out.
Prevention includes the use of eye protection. Treatment is typically with antibiotic ointment. In those who wear contact lenses a fluoroquinolone antibiotic is often recommended. Paracetamol (acetaminophen), NSAIDs, and eye drops such as cyclopentolate that paralysis the pupil can help with pain. Evidence does not support the usefulness of eye patching for those with simple abrasions.
About 3 per 1,000 people are affected a year in the United States. Males are more often affected than females. The typical age group affected is those in their 20s and 30s. Complications can include bacterial keratitis, corneal ulcer, and iritis. Complications may occur in up to 8% of people.
Chemical eye injury or chemical burns to the eye are due to either an acidic or alkali substance getting in the eye. Alkalis are typically worse than acidic burns. Mild burns will produce conjunctivitis while more severe burns may cause the cornea to turn white. Litmus paper is an easy way to rule out the diagnosis by verifying that the pH is within the normal range of 7.0—7.2. Large volumes of irrigation is the treatment of choice and should continue until the pH is 6—8. Local anaesthetic eye drops can be used to decrease the pain.
Low vitamin C intake and serum levels have been associated with greater cataract rates. However, use of supplements of vitamin C has not demonstrated benefit.
Cigarette smoking has been shown to double the rate of nuclear sclerotic cataracts and triple the rate of posterior subcapsular cataracts. Evidence is conflicting over the effect of alcohol. Some surveys have shown a link, but others which followed people over longer terms have not.
The cornea, an avascular tissue, is among the most densely innervated structures of the human body. Corneal nerves are responsible for maintaining the anatomical and functional integrity of the cornea, conveying tactile, temperature and pain sensations, playing a role in the blink reflex, in wound healing and in the production and secretion of tears.
Most corneal nerve fibres are sensory in origin and are derived from the ophthalmic branch of the trigeminal nerve. Congenital or acquired ocular and systemic diseases can determine a lesion at different levels of the trigeminal nerve, which can lead to a reduction (hypoesthesia) or loss (anesthesia) of sensitivity of the cornea.
The most common causes of loss of corneal sensitivity are viral infections (herpes simplex and herpes zoster ophthalmicus), chemical burns, physical injuries, corneal surgery, neurosurgery, chronic use of topical medications, or chronic use of contact lenses.
Possible causes also include systemic diseases such as diabetes, multiple sclerosis or leprosy.
Other, albeit less frequent, potential causes of the disease are: intracranial space-occupying lesions such as neuroma, meningioma and aneurysms, which may compress the trigeminal nerve and reduce corneal sensitivity.
Conversely, congenital conditions that may lead to this disorder are very rare.
Neurotrophic keratitis (NK) is a degenerative disease of the cornea caused by damage of the trigeminal nerve, which results in impairment of corneal sensitivity, spontaneous corneal epithelium breakdown, poor corneal healing and development of corneal ulceration, melting and perforation.
Neurotrophic keratitis is classified as a rare disease, with an estimated prevalence of less than 5 in 10,000 people in Europe. It has been recorded that on average, 6% of herpetic keratitis cases may evolve to this disease, with a peak of 12.8% of cases of keratitis due to herpes zoster virus.
The diagnosis, and particularly the treatment of neurotrophic keratitis are the most complex and challenging aspects of this disease, as a satisfactory therapeutic approach is not yet available.
As many as 50–70% of people who survive traffic accidents have facial trauma. In most developed countries, violence from other people has replaced vehicle collisions as the main cause of maxillofacial trauma; however in many developing countries traffic accidents remain the major cause. Increased use of seat belts and airbags has been credited with a reduction in the incidence of maxillofacial trauma, but fractures of the mandible (the jawbone) are not decreased by these protective measures. The risk of maxillofacial trauma is decreased by a factor of two with use of motorcycle helmets. A decline in facial bone fractures due to vehicle accidents is thought to be due to seat belt and drunk driving laws, strictly enforced speed limits and use of airbags. In vehicle accidents, drivers and front seat passengers are at highest risk for facial trauma.
Facial fractures are distributed in a fairly normal curve by age, with a peak incidence occurring between ages 20 and 40, and children under 12 suffering only 5–10% of all facial fractures. Most facial trauma in children involves lacerations and soft tissue injuries. There are several reasons for the lower incidence of facial fractures in children: the face is smaller in relation to the rest of the head, children are less often in some situations associated with facial fractures such as occupational and motor vehicle hazards, there is a lower proportion of cortical bone to cancellous bone in children's faces, poorly developed sinuses make the bones stronger, and fat pads provide protection for the facial bones.
Head and brain injuries are commonly associated with facial trauma, particularly that of the upper face; brain injury occurs in 15–48% of people with maxillofacial trauma. Coexisting injuries can affect treatment of facial trauma; for example they may be emergent and need to be treated before facial injuries. People with trauma above the level of the collar bones are considered to be at high risk for cervical spine injuries (spinal injuries in the neck) and special precautions must be taken to avoid movement of the spine, which could worsen a spinal injury.
The eye is made up of the sclera, the iris, and the pupil, a black hole located at the center of the eye with the main function of allowing light to pass to the retina. Due to certain muscle spasms in the eye, the pupil can resemble a tadpole, which consists of a circular body, no arms or legs, and a tail.
When the pupil takes on the shape of a tadpole, the condition is called tadpole pupil. Tadpole pupil, also known as episodic segmental iris mydriasis, is an ocular condition where the muscles of the iris begin to spasm causing the elongation, or lengthening, of parts of the iris. These spasms can affect any segment, or portion, of the iris and involve the iris dilator muscle. Contractions of the iris dilator muscle, a smooth muscle of the eye running radially in the iris, can cause irregular distortion of the pupil, thus making the pupil look tadpole shaped and giving this condition its name. Episodic segmental iris mydriasis was first described and termed “tadpole pupil” in 1912 by HS Thompson
Orbital fractures, in general, are more prevalent in men than women. In one study in children, 81% of cases were boys (mean age 12.5 years). In another study in adults, men accounted for 72% of orbital fractures (mean age 81).
Purtscher's retinopathy can lead to loss of vision, and recovery of vision may occur very little. However, vision recovery does occur in some cases, and reports have varied on the long-term prognosis.
Common medical causes of blowout fracture may include:
- Direct orbital blunt injury
- Sports injury (squash ball, tennis ball etc.)
- Motor vehicle accidents
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
Injury mechanisms such as falls, assaults, sports injuries, and vehicle crashes are common causes of facial trauma in children as well as adults. Blunt assaults, blows from fists or objects, are a common cause of facial injury. Facial trauma can also result from wartime injuries such as gunshots and blasts.
Animal attacks and work-related injuries such as industrial accidents are other causes. Vehicular trauma is one of the leading causes of facial injuries. Trauma commonly occurs when the face strikes a part of the vehicle's interior, such as the steering wheel. In addition, airbags can cause corneal abrasions and lacerations (cuts) to the face when they deploy.