Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Breastfeeding is a common cause of secondary amenorrhoea, and often the condition lasts for over six months. Breastfeeding typically lasts longer than lactational amenorrhoea, and the duration of amenorrhoea varies depending on how often a women breastfeeds. Lactational amenorrhoea has been advocated as a method of family planning, especially in developing countries where access to other methods of contraception may be limited. Breastfeeding is said to prevent more births in the developing world than any other method of birth control or contraception. Lactational amenorrhoea is 98% percent effective as a method of preventing pregnancy in the first six months postpartum.
Certain medications, particularly contraceptive medications, can induce amenorrhoea in a healthy woman. The lack of menstruation usually begins shortly after beginning the medication and can take up to a year to resume after stopping a medication. Hormonal contraceptives that contain only progestogen like the oral contraceptive Micronor, and especially higher-dose formulations like the injectable Depo Provera commonly induce this side-effect. Extended cycle use of combined hormonal contraceptives also allow suppression of menstruation. Patients who use and then cease using contraceptives like the combined oral contraceptive pill may experience secondary amenorrhoea as a withdrawal symptom. The link is not well understood, as studies have found no difference in hormone levels between women who develop amenorrhoea as a withdrawal symptom following the cessation of OCOP use and women who experience secondary amenorrhoea because of other reasons. New contraceptive pills, like continuous oral contraceptive pills (OCPs) which do not have the normal 7 days of placebo pills in each cycle, have been shown to increase rates of amenorrhoea in women. Studies show that women are most likely to experience amenorrhoea after 1 year of treatment with continuous OCP use.
The use of opiates (such as heroin) on a regular basis has also been known to cause amenorrhoea in longer term users.
Anti-psychotic drugs used to treat schizophrenia have been known to cause amenorrhoea as well. New research suggests that adding a dosage of Metformin to an anti-psychotic drug regimen can restore menstruation. Metformin decreases resistance to the hormone insulin, as well as levels of prolactin, testosterone, and lutenizing hormone (LH). Metformin also decreases the LH/FSH ratio. Results of the study on Metformin further implicate the regulation of these hormones as a main cause of secondary amenorrhoea.
Exercise induced amenorrhoea occurs in 5-25% of athletes and 1.8% of the general population. The incidence is higher in marathon runners and is more frequent in women who weigh less and were slightly younger . Exercise amenorrhoea has also been reported in ballet dancers, cyclists, swimmers and those involved in non-weight bearing sports .
Exercise amenorrhoea can be managed by eating a diet rich in calories and by decreasing the duration and intensity of exercise for at least 12 months. Amenorrhea usually persists and may take over 6 months to reverse .
Prolactin secretion in the pituitary is normally suppressed by the brain chemical dopamine. Drugs that block the effects of dopamine at the pituitary or deplete dopamine stores in the brain may cause the pituitary to secrete prolactin. These drugs include the major tranquillizers (phenothiazines), trifluoperazine (Stelazine), and haloperidol (Haldol); antipsychotic medications, such as risperidone and quetiapine; metoclopramide (Reglan), domperidone, cisapride used to treat gastro-oesophageal reflux; medication-induced nausea (such as cancer drugs); and, less often, alpha-methyldopa and reserpine, used to control hypertension; and estrogens and TRH. The sleep drug ramelteon (Rozerem) also increases the risk of hyperprolactinaemia. A benzodiazepine analog, etizolam, can also increase the risk of hyperprolactinaemia. In particular, the dopamine antagonists metoclopramide and domperidone are both powerful prolactin stimulators and have been used to stimulate breast milk secretion for decades. However, since prolactin is antagonized by dopamine and the body depends on the two being in balance, the risk of prolactin stimulation is generally present with all drugs that deplete dopamine, either directly or as a rebound effect.
Physiological (i.e., non-pathological) causes include: pregnancy, breastfeeding, and mental stress.
Dysmenorrhea (or dysmenorrhoea), cramps or painful menstruation, involves menstrual periods that are accompanied by either sharp, intermittent pain or dull, aching pain, usually in the pelvis or lower abdomen.
A menstrual disorder is an abnormal condition in a woman's menstrual cycle.
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
To date at least twenty five different genes have been implicated in causing Kallmann syndrome or other forms of HH through a disruption in the production or activity of GnRH. These genes involved cover all forms of inheritance and no one gene defect has been shown to be common to all cases which makes genetic testing and inheritance prediction difficult.
The number of genes known to cause cases of KS / CHH is still increasing. In addition it is thought that some cases of KS / CHH are caused by two separate gene defects occurring at the same time. Around 50% of cases have an unknown genetic origin.
Some of the genes known to be involved in cases of KS / CHH are listed in the Online Mendelian Inheritance in Man ((OMIM)) table at the end of this article.
Isolated 17,20-lyase deficiency is caused by genetic mutations in the gene "CYP17A1", which encodes for 17,20-lyase, while not affecting 17α-hydroxylase, which is encoded by the same gene.
Observed physiological abnormalities of the condition include markedly elevated serum levels of progestogens such as progesterone and 17α-hydroxyprogesterone (due to upregulation of precursor availability for androgen and estrogen synthesis), very low or fully absent peripheral concentrations of androgens such as dehydroepiandrosterone (DHEA), androstenedione, and testosterone and estrogens such as estradiol (due to the lack of 17,20-lyase activity, which is essential for their production), and high serum concentrations of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) (due to a lack of negative feedback on account of the lack of sex hormones).
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
The prevalence remains sparsely investigated. To date, two population-based nationwide studies have been conducted both estimating a prevalence about 1 in 5000 live female births. According to some reports, Queen Amalia of Greece may have had the syndrome, but a 2011 review of the historical evidence concludes that it is not possible to determine the inability of her and her husband to have a child. Her inability to provide an heir contributed to the overthrow of her husband, King Otto.
There are various explanations, none of which is universally accepted because of the complex involvement of cortical, hypothalamic, endocrine, and psychogenic factors. Proposed mechanisms include the effect of stress on the hypothalamo-pituitary-adrenal axis, constipation, weight gain, and the movement of intestinal gas.
Dogs become pseudopregnant following an estrus phase in which the female dog is not bred, or in which she is bred by an infertile male. Most species require signals from an embryo (such as IFN-τ in ruminants) to alert the female's body of a pregnancy. This maternal recognition of pregnancy will cause persistence of the corpus luteum and the development of characteristics and behaviors necessary to care for offspring. Limited research suggests that progesterone secretion is similar in pregnant and non-pregnant female dog, so veterinary researchers hypothesize that they may not require molecular factors from the embryo for maternal recognition of pregnancy, and instead the corpus luteum persists regardless of pregnancy. Since the corpus luteum is not degraded, it will cause the development of maternal characteristics in the absence of pregnancy. Pseudopregnant dogs will develop their mammary glands, lactate, and build nests to varying degrees depending on breed. Although female dogs usually only cycle once or twice per year, pseudopregnancy is common.
The condition affects only those with a Y-chromosome because dihydrotestosterone (DHT) has no known role in development of XX fetuses.
5α-Reductase is an enzyme that converts testosterone to 5α-dihydrotestosterone (DHT) in peripheral tissues. These enzymes also participate in the creation of such neurosteroids as allopregnanolone and THDOC, convert progesterone into dihydroprogesterone (DHP), and convert deoxycorticosterone (DOC) into dihydrodeoxycorticosterone (DHDOC). 5-ARD is biochemically characterized by low to low-normal levels of testosterone and decreased levels of DHT, creating a higher testosterone/DHT ratio.
DHT is a potent androgen, and is necessary for the development of male external genitalia in utero.
WNT4 (found on the short arm (p) of chromosome 1) has been clearly implicated in the atypical version of this disorder. A genetic mutation causes a leucine to proline residue substitution at amino acid position 12. This occurrence reduces the intranuclear levels of β catenin. In addition, it removes the inhibition of steroidogenic enzymes like 3β-hydroxysteriod dehydrogenase and 17α-hydroxylase. Patients therefore have androgen excess. Furthermore, without WNT4, the Müllerian duct is either deformed or absent. Female reproductive organs, such as the cervix, fallopian tubes, ovaries, and much of the vagina, are hence affected.
An association with a deletion mutation in the long arm (q) of chromosome 17 (17q12) has been reported. The gene LHX1 is located in this region and may be the cause of a number of these cases.
It is generally treated surgically, with a hymenotomy or other surgery to remove any tissue that blocks the menstrual flow.
A study, in community dwelling older adults with an average age of 67 years, found the UK prevalence of sarcopenia to be 4.6% in men and 7.9% in women using the EWGSOP approach. Another study, conducted in the United States among older adults with an average age of 70.1 years, found the prevalence of sarcopenia to be 36.5%. Sarcopenia affects about half of people over 80 in one state in the USA.
Several studies have shown that obese men tend to have a lower sperm count, fewer rapidly mobile sperm and fewer progressively motile sperm compared to normal-weight men.
Obesity in Germany has created a cholesterol problem. High cholesterol is known to cause premature death, angina, heart disease and strokes.
There has been an increase of children with Type 1 diabetes between 1996 and 2011. Diabetics are at higher risk for complications such as heart attack and stroke. In Germany, 600,000 people suffered from diabetes near the end of World War II compared to eight million now.
Obesity can increased risk for secondary diseases such as diabetes, cardiovascular disease, certain cancers and Alzheimer's. Children who get diabetes can expect to lose 10 to 15 years off of their lives. Diabetes also affect the eyes, kidneys and nerves in the legs.
Obesity is a "very strong promoter of cancer." Obesity causes an increased risk for colon cancer and breast cancer.
Hematocolpos is a medical condition in which the vagina fills with menstrual blood. It is often caused by the combination of menstruation with an imperforate hymen. It is sometimes seen in Robinow syndrome, uterus didelphys, or other congenital conditions.
A related disorder is hematometra, where the uterus fills with menstrual blood. It presents after puberty as primary amenorrhoea, recurrent pelvic pain with a pelvic mass. This can be caused by a congenital stenosis of the cervix, or by a complication of a surgical treatment.
A common pathological cause for a high BMR is fever, since a rise in body temperature increases the rate of cellular metabolic reactions. It is estimated that for every degree Fahrenheit of rise in body temperature, the BMR increases by 7 percent.
Thyroid disease also has a marked effect on BMR, since thyroid hormones regulate the rate of cellular metabolism. Hyperthyroidism—in which there is an increase in the production of thyroid hormones—leads to a high BMR, while hypothyroidism—in which thyroid hormones are depleted—causes a low BMR.
Prolonged periods of abnormal nutrition cause an adaptive change in BMR; this helps the body to maintain a stable body weight in response to the change in food supply. In prolonged malnutrition, the BMR declines, while in prolonged overnutrition, the BMR is increased. Cancer sometimes causes an increase in BMR, perhaps because the cancer cells that form tumors have a high level of metabolic activity.
Genes partly play a role in obesity. Scientists at the German Institute of Human Nutrition and the University Hospital of Leipzig stated that identified two genes that promote fat accumulation in the abdominal cavity. The increased activity of the genes also promotes the release of an enzyme that is responsible for the formation of cortisol. A permanent increase in cortisol levels contribute to obesity.
As much as 64% of the United States' adult population is considered either overweight or obese, and this percentage has increased over the last four decades.