Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.
Studies have found that about 5 percent of Caucasians in North America have factor V Leiden. The condition is less common in Latin Americans and African-Americans and is extremely rare in people of Asian descent.
Up to 30 percent of patients who present with deep vein thrombosis (DVT) or pulmonary embolism have this condition. The risk of developing a clot in a blood vessel depends on whether a person inherits one or two copies of the factor V Leiden mutation. Inheriting one copy of the mutation from a parent (heterozygous) increases by fourfold to eightfold the chance of developing a clot. People who inherit two copies of the mutation (homozygous), one from each parent, may have up to 80 times the usual risk of developing this type of blood clot. Considering that the risk of developing an abnormal blood clot averages about 1 in 1,000 per year in the general population, the presence of one copy of the factor V Leiden mutation increases that risk to between 4 in 1,000 to 8 in 1,000. Having two copies of the mutation may raise the risk as high as 80 in 1,000. It is unclear whether these individuals are at increased risk for "recurrent" venous thrombosis. While only 1 percent of people with factor V Leiden have two copies of the defective gene, these homozygous individuals have a more severe clinical condition. The presence of acquired risk factors for venous thrombosis—including smoking, use of estrogen-containing (combined) forms of hormonal contraception, and recent surgery—further increase the chance that an individual with the factor V Leiden mutation will develop DVT.
Women with factor V Leiden have a substantially increased risk of clotting in pregnancy (and on estrogen-containing birth control pills or hormone replacement) in the form of deep vein thrombosis and pulmonary embolism. They also may have a small increased risk of preeclampsia, may have a small increased risk of low birth weight babies, may have a small increased risk of miscarriage and stillbirth due to either clotting in the placenta, umbilical cord, or the fetus (fetal clotting may depend on whether the baby has inherited the gene) or influences the clotting system may have on placental development. Note that many of these women go through one or more pregnancies with no difficulties, while others may repeatedly have pregnancy complications, and still others may develop clots within weeks of becoming pregnant.
The three factors of Virchow's triad—venous stasis, hypercoagulability, and changes in the endothelial blood vessel lining (such as physical damage or endothelial activation)—contribute to DVT and are used to explain its formation. Other related causes include activation of immune system components, the state of microparticles in the blood, the concentration of oxygen, and possible platelet activation. Various risk factors contribute to DVT, though many at high risk never develop it.
Acquired risk factors include the strong risk factor of older age, which alters blood composition to favor clotting. Other important acquired risk factors include major surgery and trauma, both of which may increase the risk because of tissue factor from outside the vascular system entering the blood. In orthopedic surgery, venous stasis may be temporarily provoked by a cessation of blood flow as part of the procedure. Cancer can grow in and around veins, causing venous stasis, and can also stimulate increased levels of tissue factor. Pregnancy causes blood to favor clotting, and in the postpartum, placental tearing releases substances that favor clotting. Oral contraceptives and hormonal replacement therapy increase the risk through a variety of mechanisms, including altered blood coagulation protein levels and reduced fibrinolysis.
The disease term venous thromboembolism (VTE) includes the development of either DVT or pulmonary embolism (PE). Genetic factors that increase the risk of VTE include deficiencies of three proteins that normally prevent blood from clotting—protein C, protein S, and antithrombin—in addition to non-O blood type and mutations in the factor V and prothrombin genes. Deficiencies in antithrombin, protein C, and protein S are rare but strong, or moderately strong, risk factors. These three thrombophilia increase the risk of VTE by about 10 times. Factor V Leiden, which makes factor V resistant to inactivation by activated protein C, and the genetic variant prothrombin G20210A, which causes increased prothrombin levels, are predominantly expressed in Caucasians. They moderately increase risk for VTE, by three to eight times for factor V Leiden and two to three times for prothrombin G20210A. Having a non-O blood type roughly doubles VTE risk. Non-O blood type is common in all races, making it an important risk factor. Individuals without O blood type have higher blood levels of von Willebrand factor and factor VIII than those with O blood type, increasing the likelihood of clotting.
Some risk factors influence the location of DVT within the body. In isolated distal DVT, the profile of risk factors appears distinct from proximal DVT. Transient factors, such as surgery and immobilization, appear to dominate, whereas thrombophilias and age do not seem to increase risk. In upper-extremity DVT, the most important risk factor is having a central venous catheter, and thoracic outlet syndrome also increases risk.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Thrombophlebitis occurs almost equally between women and men, though males do have a slightly higher possibility. The average age of developing thrombophlebitis, based on analyzed incidents, is 54 for men and 58 for women.
Prognosis varies depending on the underlying disorder, and the extent of the intravascular thrombosis (clotting). The prognosis for those with DIC, regardless of cause, is often grim: Between 20% and 50% of patients will die. DIC with sepsis (infection) has a significantly higher rate of death than DIC associated with trauma.
The variant causes elevated plasma prothrombin levels (hyperprothrombinemia), possibly due to increased pre-mRNA stability. Prothrombin is the precursor to thrombin, which plays a key role in causing blood to clot (blood coagulation). G20210A can thus contribute to a state of hypercoagulability, but not particularly with arterial thrombosis. A 2006 meta-analysis showed only a 1.3-fold increased risk for coronary disease.
It confers a 2- to 3-fold higher risk of VTE. Deficiencies in the anticoagulants Protein C and Protein S give a higher risk (5- to 10-fold). Behind non-O blood type and factor V Leiden, prothrombin G20210A is one of the most common genetic risk factors for VTE. It was realized in 1996 that a particular change in the genetic code causes the body to make too much of the prothrombin protein. By having too much prothrombin, it increases the chances the blood clotting. Individuals who carry the condition have the prothrombin mutation which can be inherited by offspring.
Having the prothrombin mutation increases the risk of developing a DVT (Deep vein thrombosis), known as a blood clot in the deep veins, often but not always in the legs. DVTs are threatening as they can damage the veins throughout the body, causing pain and swelling, and sometimes leading to disability.
Most variety of people who have this prothrombin gene mutation do not require any treatment but need to be cautious throughout periods when the possibility of getting a blood clot may be enlarged (e.g. after surgery, during long flights etc.); occasionally people with the mutation may need to go on blood thinning medication to decrease the risk of developing blood clots. As there is no cure for the mutation, studies throughout the world are becoming conversant, emitting various medications in order to decrease risk factors.
Heterozygous carriers who take combined birth control pills are at a 15-fold increased risk of VTE, while carriers also heterozygous with factor V Leiden have an approximate 20-fold higher risk. In a recommendation statement on VTE, genetic testing for G20210A in adults that developed unprovoked VTE was disadvised, as was testing in asymptomatic family members related to G20210A carriers who developed VTE. In those who develop VTE, the results of thrombophilia tests (wherein the variant can be detected) rarely play a role in the length of treatment.
DIC is observed in approximately 1% of academic hospital admissions. DIC occurs at higher rates in people with bacterial sepsis (83%), severe trauma (31%), and cancer (6.8%).
Thrombophlebitis causes include disorders related to increased tendency for blood clotting and reduced speed of blood in the veins such as prolonged immobility; prolonged traveling (sitting) may promote a blood clot leading to thrombophlebitis but this occurs relatively less. High estrogen states such as pregnancy, estrogen replacement therapy, or oral contraceptives are associated with an increased risk of thrombophlebitis.
Specific disorders associated with thrombophlebitis include superficial thrombophlebitis which affects veins near the skin surface, deep venous thrombosis which affects deeper veins, and pulmonary embolism. Those with familial clotting disorders such as protein S deficiency, protein C deficiency, or factor V Leiden are also at increased risk of thrombophlebitis. Thrombophlebitis can be found in people with vasculitis including Behçet's disease. Thrombophlebitis migrans can be a sign of malignancy - Trousseau sign of malignancy..
Prothrombin G20210A ( rs1799963) refers to condition in which a specific gene mutation increases the risk of blood clots.
The "G20210A" refers to the fact that the mutation is a guanine (G) to adenine (A) substitution at position 20210 of the DNA of the prothrombin gene. This mutation (or more accurately, single-nucleotide polymorphism or variant), is commonly associated with increased risk of occurrence and recurrence of the disease venous thromboembolism (VTE), including both deep vein thrombosis (DVT) and pulmonary embolism (PE). As of 2005, it was believed that most carriers of the mutation never develop VTE in their lifetimes. Other blood clotting pathway mutations that increase the risk of clots include factor V Leiden.
Prothrombin G20210A was identified in the 1990s, is almost exclusively present in Caucasians. It is estimated to have originated in that population slightly over 20,000 years ago. About 2 to 3% of Caucasians carry the variant.
As there is no cure, treatment is focused on prevention of thrombotic complications by counseling. In addition, temporary treatment with an anticoagulant may be required during periods of particularly high risk of thrombosis, such as major surgery.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
The normal clotting process depends on the interplay of various proteins in the blood. Coagulopathy may be caused by reduced levels or absence of blood-clotting proteins, known as clotting factors or coagulation factors. Genetic disorders, such as hemophilia and Von Willebrand's disease, can cause a reduction in clotting factors.
Anticoagulants such as warfarin will also prevent clots from forming properly. Coagulopathy may also occur as a result of dysfunction or reduced levels of platelets (small disk-shaped bodies in the bloodstream that aid in the clotting process).
Surgery to remove the clot is possible, but rarely performed. In the past, surgical removal of the renal vein clot was the primary treatment but it is very invasive and many complications can occur. In the past decades, treatment has shifted its focus from surgical intervention to medical treatments that include intravenous and oral anticoagulants. The use of anticoagulants may improve renal function in RVT cases by removing the clot in the vein and preventing further clots from occurring. Patients already suffering from nephrotic syndrome may not need to take anticoagulants. In this case, patients should keep an eye out and maintain reduced level of proteinuria by reducing salt and excess protein, and intaking diuretics and statins. Depending on the severity of RVT, patients may be on anticoagulants from a year up to a lifetime. As long as the albumen levels in the bloodstream are below 2.5g/L, it is recommended that RVT patients continue taking anticoagulants. Main anticoagulants that can be used to treat RVT include warfarin and low molecular weight heparin. Heparin has become very popular, because of its low risk of complications, its availability and because it can easily be administered. Warfarin is known to interact with many other drugs, so careful monitoring is required. If a nephrotic syndrome patient experiences any of the RVT symptoms (flank or back pain, blood in the urine or decreased renal function), he or she should immediately see a doctor to avoid further complications.
The main side effect of anticoagulants is the risk of excessive bleeding. Other side effects include: blood in the urine or feces, severe bruising, prolonged nosebleeds (lasting longer than 10 minutes), bleeding gum, blood in your vomit or coughing up blood, unusual headaches, sudden severe back pain, difficulty breathing or chest pain, in women, heavy or increased bleeding during the period, or any other bleeding from the vagina. Warfarin can cause rashes, diarrhea, nausea (feeling sick) or vomiting, and hair loss. Heparin can cause hair loss (alopecia) thrombocytopenia – a sudden drop in the number of platelets in the blood.
It has been reported in a case study of 27 patients with nephrotic syndrome caused RVT, there was a 40% mortality rate, mostly due to hemorrhagic complications and sepsis. In 75% of the remaining surviving patients, the RVT was resolved and renal function returned to normal. It has been concluded that age is not a factor on the survival of RVT patients, although older patient (55 and older) are more likely to develop renal failure. Heparin is crucial in returning normal renal function; in patients that did not take heparin, long term renal damage was observed in 100%. In patients that did take heparin, renal damage was observed in about 33%. By quickly treating, and receiving the correct medications, patients should increase their chances of survival and reduce the risk of the renal vein clot from migrating to another part of the body.
Warfarin necrosis usually occurs three to five days after drug therapy is begun, and a high initial dose increases the risk of its development. Heparin-induced necrosis can develop both at sites of local injection and - when infused intravenously - in a widespread pattern.
In warfarin's initial stages of action, inhibition of protein C and Factor VII is stronger than inhibition of the other vitamin K-dependent coagulation factors II, IX and X. This results from the fact that these proteins have different half-lives: 1.5 to six hours for factor VII and eight hours for protein C, versus one day for factor IX, two days for factor X and two to five days for factor II. The larger the initial dose of vitamin K-antagonist, the more pronounced these differences are. This coagulation factor imbalance leads to paradoxical activation of coagulation, resulting in a hypercoagulable state and thrombosis. The blood clots interrupt the blood supply to the skin, causing necrosis. Protein C is an innate anticoagulant, and as warfarin further decreases protein C levels, it can lead to massive thrombosis with necrosis and gangrene of limbs.
Notably, the prothrombin time (or international normalized ratio, INR) used to test the effect of warfarin is highly dependent on factor VII, which explains why patients can have a therapeutic INR (indicating good anticoagulant effect) but still be in a hypercoagulable state.
In one third of cases, warfarin necrosis occurs in patients with an underlying, innate and previously unknown deficiency of protein C. The condition is related to purpura fulminans, a complication in infants with sepsis (blood stream infection) which also involves skin necrosis. These infants often have protein C deficiency as well. There have also been cases in patients with other deficiency, including protein S deficiency, activated protein C resistance (Factor V Leiden) and antithrombin III deficiency.
Although the above theory is the most commonly accepted theory, others believe that it is a hypersensitivity reaction or a direct toxic effect.
Due to the rarity of Purpura fulminans and its occurrence in vulnerable patient groups like children research on the condition is very limited and evidence based knowledge is scarce. Currently, there is only one Purpura fulminans related clinical research project, http://www.sapfire-registry.org/, which is registered with clinicaltrials.gov.
One area of treatment is managing people with major bleeding in a critical setting, like an emergency department. In these situations, the common treatment is transfusing a combination of red cells with one of the following options:
- Blood plasma
- Prothrombin complex concentrate, factor XIII, and fibrinogen
- Fibrinogen with tranexamic acid
The use of tranexamic acid is the only option that is currently supported by a large, randomized, controlled clinical trial, and is given to people with major bleeding after trauma. There are several possible risks to treating coagulopathies, such as transfusion-related acute lung injury, acute respiratory distress syndrome, multiple organ dysfunction syndrome, major hemorrhage, and venous thromboembolism.
Like most aspects of the disorder, life expectancy varies with severity and adequate treatment. People with severe haemophilia who don't receive adequate, modern treatment have greatly shortened lifespans and often do not reach maturity. Prior to the 1960s when effective treatment became available, average life expectancy was only 11 years. By the 1980s the life span of the average haemophiliac receiving appropriate treatment was 50–60 years. Today with appropriate treatment, males with haemophilia typically have a near normal quality of life with an average lifespan approximately 10 years shorter than an unaffected male.
Since the 1980s the primary leading cause of death of people with severe haemophilia has shifted from haemorrhage to HIV/AIDS acquired through treatment with contaminated blood products. The second leading cause of death related to severe haemophilia complications is intracranial haemorrhage which today accounts for one third of all deaths of people with haemophilia. Two other major causes of death include hepatitis infections causing cirrhosis and obstruction of air or blood flow due to soft tissue haemorrhage.
There are autoimmune causes of coagulation disorders. They include acquired antibodies to coagulation factors, termed inhibitors of coagulation. The main inhibitor is directed against clotting Factor VIII. Another example is antiphospholipid syndrome an autoimmune, hypercoagulable state.
Acquired causes of coagulopathy include anticoagulation with warfarin, liver failure, Vitamin K deficiency and disseminated intravascular coagulation.Additionally, the haemotoxic venom from certain species of snakes can cause this condition, for example Bothrops, rattlesnakes and other species of viper. Viral hemorrhagic fevers include dengue hemorrhagic fever and Dengue Shock Syndrome
Leukemia may also cause coagulopathy. Furthermore, cystic fibrosis has been known to cause bleeding diathesis, especially in undiagnosed infants, due to malabsorption of fat soluble vitamins like Vitamin K.
Many conditions mimic or may be mistaken for warfarin necrosis, including pyoderma gangrenosum or necrotizing fasciitis. Warfarin necrosis is also different from another drug eruption associated with warfarin, purple toe syndrome, which usually occurs three to eight weeks after the start of anticoagulation therapy. No report has described this disorder in the immediate postpartum period in patients with protein S deficiency.
Haemophilia is rare, with only about 1 instance in every 10,000 births (or 1 in 5,000 male births) for haemophilia A and 1 in 50,000 births for haemophilia B. About 18,000 people in the United States have haemophilia. Each year in the US, about 400 babies are born with the disorder. Haemophilia usually occurs in males and less often in females. It is estimated that about 2500 Canadians have haemophilia A, and about 500 Canadians have haemophilia B.
Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications. In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.
Several factors may increase the tendency for clot formation, such as specific infections (such as infectious mononucleosis, cytomegalovirus infection, malaria, or babesiosis), inherited clotting disorders (thrombophilia, such as Factor V Leiden, antiphospholipid syndrome), malignancy (such as pancreatic cancer) or metastasis, or a combination of these factors.
In some conditions, blood clots form in one part of the circulatory system and then dislodge and travel to another part of the body, which could include the spleen. These emboligenic disorders include atrial fibrillation, patent foramen ovale, endocarditis or cholesterol embolism.
Splenic infarction is also more common in hematological disorders with associated splenomegaly, such as the myeloproliferative disorders. Other causes of splenomegaly (for example, Gaucher disease or hemoglobinopathies) can also predispose to infarction. Splenic infarction can also result from a sickle cell crisis in patients with sickle cell anemia. Both splenomegaly and a tendency towards clot formation feature in this condition. In sickle cell disease, repeated splenic infarctions lead to a non-functional spleen (autosplenectomy).
Any factor that directly compromises the splenic artery can cause infarction. Examples include abdominal traumas, aortic dissection, torsion of the splenic artery (for example, in wandering spleen) or external compression on the artery by a tumor. It can also be a complication of vascular procedures.
Splenic infarction can be due to vasculitis or disseminated intravascular coagulation. Various other conditions have been associated with splenic infarction in case reporters, for example granulomatosis with polyangiitis or treatment with medications that predispose to vasospasm or blood clot formation, such as vasoconstrictors used to treat esophageal varices, sumatriptan or bevacizumab.
Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.
Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.