Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is not clear exactly what causes esophageal spasms. Sometimes esophageal spasms start when someone eats hot or cold foods or drinks. However, they can also occur with eating or drinking. The increased release of acetylcholine may also be a factor, but the triggering event is not known.
Gastroesophageal reflux disease (GERD) affects approximately 40% of adults. Strictures occur in 7 to 23% of patients with GERD who are untreated.
Esophageal spasm is rare. Often, symptoms that may suggest esophageal spasm are the result of another condition such as gastroesophageal reflux disease (GERD) or achalasia. The symptoms can also include dysphagia, regurgitation, noncardiac chest pain, heartburn, globus pharyngis (which is a feeling that something is stuck in the throat) or a dry cough.
Incidence of achalasia has risen to approximately 1.6 per 100,000 in some populations. Disease affects mostly adults between ages 30s and 50s.
In Western populations, GERD affects approximately 10% to 20% of the population and 0.4% newly develop the condition. For instance, an estimated 3.4 million to 6.8 million Canadians are GERD sufferers. The prevalence rate of GERD in developed nations is also tightly linked with age, with adults aged 60 to 70 being the most commonly affected. In the United States 20% of people have symptoms in a given week and 7% every day. No data support sex predominance with regard to GERD.
GERD is caused by a failure of the lower esophageal sphincter. In healthy patients, the "Angle of His"—the angle at which the esophagus enters the stomach—creates a valve that prevents duodenal bile, enzymes, and stomach acid from traveling back into the esophagus where they can cause burning and inflammation of sensitive esophageal tissue.
Factors that can contribute to GERD:
- Hiatal hernia, which increases the likelihood of GERD due to mechanical and motility factors.
- Obesity: increasing body mass index is associated with more severe GERD. In a large series of 2,000 patients with symptomatic reflux disease, it has been shown that 13% of changes in esophageal acid exposure is attributable to changes in body mass index.
- Zollinger-Ellison syndrome, which can be present with increased gastric acidity due to gastrin production.
- A high blood calcium level, which can increase gastrin production, leading to increased acidity.
- Scleroderma and systemic sclerosis, which can feature esophageal dysmotility.
- The use of medicines such as prednisolone.
- Visceroptosis or Glénard syndrome, in which the stomach has sunk in the abdomen upsetting the motility and acid secretion of the stomach.
GERD has been linked to a variety of respiratory and laryngeal complaints such as laryngitis, chronic cough, pulmonary fibrosis, earache, and asthma, even when not clinically apparent. These atypical manifestations of GERD are commonly referred to as laryngopharyngeal reflux (LPR) or as extraesophageal reflux disease (EERD).
Factors that have been linked with GERD, but not conclusively:
- Obstructive sleep apnea
- Gallstones, which can impede the flow of bile into the duodenum, which can affect the ability to neutralize gastric acid
In 1999, a review of existing studies found that, on average, 40% of GERD patients also had "H. pylori" infection. The eradication of "H. pylori" can lead to an increase in acid secretion, leading to the question of whether "H. pylori"-infected GERD patients are any different than non-infected GERD patients. A double-blind study, reported in 2004, found no clinically significant difference between these two types of patients with regard to the subjective or objective measures of disease severity.
Nutcracker esophagus, or hypertensive peristalsis, is a disorder of the movement of the esophagus characterized by contractions in the smooth muscle of the esophagus in a normal sequence but at an excessive amplitude or duration. Nutcracker esophagus is one of several motility disorders of the esophagus, including achalasia and diffuse esophageal spasm. It causes difficulty swallowing, or dysphagia, to both solid and liquid foods, and can cause significant chest pain; it may also be asymptomatic. Nutcracker esophagus can affect people of any age, but is more common in the sixth and seventh decades of life. The diagnosis is made by an esophageal motility study (esophageal manometry), which evaluates the pressure of the esophagus at various points along its length. The term "nutcracker esophagus" comes from the finding of increased pressures during peristalsis, with a diagnosis made when pressures exceed 180 mmHg; this has been likened to the pressure of a mechanical nutcracker. The disorder does not progress, and is not associated with any complications; as a result, treatment of nutcracker esophagus targets control of symptoms only.
About 6 to 14 percent of patients who receive a routine barium swallow test of the esophagus are found to have a Schatzki ring.
If there is dysphagia to both solids and liquids, then it is most likely a motility problem. If there is dysphagia initially to solids but progresses to also involve liquids, then it is most likely a mechanical obstruction. Once a distinction has been made between a motility problem and a mechanical obstruction, it is important to note whether the dysphagia is intermittent or progressive. An intermittent motility dysphagia likely can be diffuse esophageal spasm (DES) or nonspecific esophageal motility disorder (NEMD). Progressive motility dysphagia disorders include scleroderma or achalasia with chronic heartburn, regurgitation, respiratory problems, or weight loss. Intermittent mechanical dysphagia is likely to be an esophageal ring. Progressive mechanical dysphagia is most likely due to peptic stricture or esophageal cancer.
The patient is generally sent for a GI, pulmonary, or ENT, depending on the suspected underlying cause. Consultations with a speech therapist and registered dietitian nutritionist (RDN) are also needed, as many patients may need dietary modifications such as thickened fluids.
Causes of diffuse esophageal spasm are not well understood. It is thought, however, that many cases are caused by uncontrolled brain signals running to nerve endings. Therefore, suppression medication is often the first line therapy such as anti depressants and anti-epileptic medication are prescribed. It has also been reported that very cold or hot beverages can trigger an esophageal spasm. Avoidance therapy benefits some people, but it has not been medically proven.
Nutcracker esophagus is a benign, nonprogressive condition, meaning it is not associated with significant complications. Patients are usually reassured by their physicians that the disease is unlikely to worsen. However, the symptoms of chest pain and dysphagia may be severe enough to require treatment with medications, and rarely, surgery.
The initial step of treatment focuses on reducing risk factors. While weight reduction may be useful in reducing symptoms, the role of acid suppression therapy to reduce esophageal reflux is still uncertain. Very cold and very hot beverages may trigger esophageal spasms.
Medical therapy for nutcracker esophagus includes the use of calcium-channel blockers, which relax the lower esophageal sphincter (LES) and palliate the dysphagia symptoms. Diltiazem, a calcium-channel blocker, has been used in randomized control studies with good effect. Nitrate medications, including isosorbide dinitrate, given before meals, may also help relax the LES and improve symptoms. The inexpensive generic combination of belladonna and phenobarbital (Donnatal and other brands) may be taken three times daily as a tablet to prevent attacks or, for patients with only occasional episodes, as an elixir at the onset of symptoms. Phosphodiesterase inhibitors, such as sildenafil, can be given to reduce symptoms, particularly pain, but small trials have not been able to demonstrate clinical improvement. Finally, trazodone, an antidepressant that reduces visceral sensitivity, has also been shown to reduce chest pain symptoms in patients with nutcracker esophagus.
Endoscopic therapy with botulinum toxin, known also as Botox, can also be used to improve dysphagia which stabilizes unintentional weight loss, but the effect has limited effect on other symptoms, including pain, while also being a temporary treatment lasting a few weeks. Finally, pneumatic dilatation of the esophagus, which is an endoscopic technique where a high-pressure balloon is used to stretch the muscles of the LES, can be performed to improve symptoms, but again no clinical improvement is seen in regards to motility.
It can be caused by or associated with gastroesophageal reflux disease, esophagitis, a dysfunctional lower esophageal sphincter, disordered motility, lye ingestion, or a hiatal hernia. Strictures can form after esophageal surgery and other treatments such as laser therapy or photodynamic therapy. While the area heals, a scar forms, causing the tissue to pull and tighten, leading to difficulty in swallowing.
Esophageal diseases can derive from congenital conditions, or they can be acquired later in life.
Many people experience a burning sensation in their chest occasionally, caused by stomach acids refluxing into the esophagus, normally called heartburn. Extended exposure to heartburn may erode the lining of the esophagus, leading potentially to Barrett's esophagus which is associated with an increased risk of adenocarcinoma most commonly found in the distal one-third of the esophagus.
Some people also experience a sensation known as globus esophagus, where it feels as if a ball is lodged in the lower part of the esophagus.
The following are additional diseases and conditions that affect the esophagus:
- Achalasia
- Acute esophageal necrosis
- Barrett's esophagus
- Boerhaave syndrome
- Caustic injury to the esophagus
- Chagas disease
- Diffuse esophageal spasm
- Esophageal atresia and Tracheoesophageal fistula
- Esophageal cancer
- Esophageal dysphagia
- Esophageal varices
- Esophageal web
- Esophagitis
- GERD
- Hiatus hernia
- Jackhammer esophagus (hypercontractile peristalsis)
- Killian–Jamieson diverticulum
- Mallory-Weiss syndrome
- Neurogenic dysphagia
- Nutcracker esophagus
- Schatzki's ring
- Zenker's Diverticulum
Achalasia (; "" + "-chalasia" "no relaxation") is a failure of smooth muscle fibers to relax, which can cause a sphincter to remain closed and fail to open when needed. Without a modifier, "achalasia" usually refers to achalasia of the esophagus, which is also called esophageal achalasia, achalasia cardiae, cardiospasm, and esophageal aperistalsis. Achalasia can happen at various points along the gastrointestinal tract; achalasia of the rectum, for instance, may occur in Hirschsprung's disease.
Esophageal achalasia is an esophageal motility disorder involving the smooth muscle layer of the esophagus and the lower esophageal sphincter (LES). It is characterized by incomplete LES relaxation, increased LES tone, and lack of peristalsis of the esophagus (inability of smooth muscle to move food down the esophagus) in the absence of other explanations like cancer or fibrosis.
Achalasia is characterized by difficulty in swallowing, regurgitation, and sometimes chest pain. Diagnosis is reached with esophageal manometry and barium swallow radiographic studies. Various treatments are available, although none cures the condition. Certain medications or Botox may be used in some cases, but more permanent relief is brought by esophageal dilatation and surgical cleaving of the muscle (Heller myotomy).
The most common form is primary achalasia, which has no known underlying cause. It is due to the failure of distal esophageal inhibitory neurons. However, a small proportion occurs secondary to other conditions, such as esophageal cancer or Chagas disease (an infectious disease common in South America). Achalasia affects about one person in 100,000 per year. There is no gender predominance for the occurrence of disease.
Causes
Esophagitis cannot be spread. However, infections can be spread by those who have infectious esophagitis. Esophagitis can develop due to many causes. GERD is the most common cause of esophagitis because of the backflow of acid from the stomach, which can irritate the lining of the esophagus.
Other causes include:
- Medicines- Can cause esophageal damage that can lead to esophageal ulcers
- Nonsteroidal anti-inflammatory drugs (NSAIDS)-aspirin, naproxen sodium, and ibuprofen. Known to irritate the GI tract.
- Antibiotics- doxycycline and tetracycline
- Quinidine
- Biphosphonates- used to treat osteoporosis
- Steroids
- Potassium chloride
- Chemical injury by alkaline or acid solutions
- Physical injury resulting from nasogastric tubes.
- Alcohol abuse- Can wear down the lining of the esophagus.
- Crohn's disease – a type of IBD and an autoimmune disease that can cause esophagitis if it attacks the esophagus.
- Stress- Can cause higher levels of acid reflux
- Radiation therapy-Can affect the immune system.
- Allergies (food, inhalants)- Allergies can stimulate eosinophilic esophagitis.
- Infection-People with an immunodeficiencies have a higher chance of developing esophagitis.
- Vitamins and supplements (iron, Vitamin C, and potassium)-Supplements and minerals can be hard on the GI tract.
- Vomiting- Acid can irritate esophagus.
- Hernias-A hernia can poke through the diaphragm muscle and can inhibit the stomach acid and food from draining quickly.
- Surgery
Prevention
Since there can be many causes underlying esophagitis, it is important to try to find the cause to help to prevent esophagitis. To prevent reflux esophagitis, avoid acidic foods, caffeine, eating before going to bed, alcohol, fatty meals, and smoking. To prevent drug-induced esophagitis, drink plenty of liquids when taking medicines, take an alternative drug, and do not take medicines while lying down, before sleeping, or too many at one time. Esophagitis is more prevalent in adults and does not discriminate.
Barrett's esophagus is a premalignant condition. Its malignant sequela, oesophagogastric junctional adenocarcinoma, has a mortality rate of over 85%. The risk of developing esophageal adenocarcinoma in people who have Barrett's esophagus has been estimated to be 6–7 per 1000 person-years, however a cohort study of 11,028 patients from Denmark published in 2011 showed an incidence of only 1.2 per 1000 person-years (5.1 per 1000 person-years in patients with dysplasia, 1.0 per 1000 person-years in patients without dysplasia). The relative risk of esophageal adenocarcinoma is approximately 10 in those with Barret's esophagus, compared to the general population. Most patients with esophageal carcinoma survive less than one year.
Food bolus obstruction is most commonly caused by Schatzki rings, which are mucosal rings of unknown cause in the lower esophagus. Foodstuff jams into the esophagus due to the narrowing caused by the ring. An increasingly commonly recognized cause for esophageal food bolus obstruction is eosinophilic esophagitis, which is an inflammatory disorder of the mucosa of the esophagus, of unknown cause. Many alterations caused by eosinophilic esophagitis can predispose to food boluses; these include the presence of multiple rings and narrowing of the lumen. When considering esophageal dilation to treat a patient with food bolus obstruction, care must be made to look for features of eosinophilic esophagitis, as these patients are at a higher risk of dilation-associated complications.
Other conditions that predispose to food bolus obstructions are esophageal webs and peptic strictures. Food boluses are common in the course of illness in patients with esophageal cancer but are more difficult to treat as endoscopy to push the bolus is less safe. Patients with esophageal self-expandable metallic stents may present with food boluses lodged within the stent lumen. Rarely disorders of movement of the esophagus, such as nutcracker esophagus, can predispose to food bolus obstruction.
In an emergency room setting, someone with food bolus obstruction may be observed for a period to see if the food bolus passes spontaneously. This may be encouraged by administering fizzy drinks that release gas, which may dislodge the food.
Glucagon relaxes the lower esophageal sphincter and may be used in those with esophageal food bolus obstruction. There is little evidence for glucagon's effectiveness in this condition, and glucagon may induce nausea and vomiting, but considering the safety of glucagon this is still considered an acceptable option as long it does not lead to delays in arranging other treatments. Other medications (hyoscine butylbromide, benzodiazepines and opioids) have been studied but the evidence is limited.
Historical treatment of food bolus obstruction included administration of proteolytic enzymes (such as meat tenderizers) with the purpose of degrading the meat that was blocked; however, it is possible that these methods may increase the risk of perforation of the esophagus. Other modalities rarely used now include removal of boluses using catheters, and the use of large-bore tubes inserted into the esophagus to forcefully lavage it.
Diffuse esophageal spasm (DES) is a condition characterized by uncoordinated contractions of the esophagus, which may cause difficulty swallowing (dysphagia) or regurgitation. In some cases, it may cause symptoms such as chest pain, similar to heart disease. The cause of DES remains unknown.
Certain abnormalities on x-ray imaging are commonly observed in DES, such as a "corkscrew" or "rosary bead esophagus", although these findings are not unique to this condition. Specialized testing called manometry can be performed to evaluate the motor function of the esophagus, which can help identify abnormal patterns of muscle contraction within the esophagus that are suggestive of DES. The treatment of DES consists primarily of medications, such as acid suppressing agents (like proton pump inhibitors), calcium channel blockers, hyoscine butylbromide, or nitrates. In only extremely rare cases, surgery may be considered. People with DES have higher incidences of gastroesophageal reflux disease (GERD) and anxiety.
Zenker's diverticulum mainly affects older adults. It has an incidence of 2 per 100,000 per year in the UK, but there is significant geographical variation around the world.
Treatments for esophagitis include medications to block acid production, to manage pain, and to reduce inflammation. Other treatments include antibiotics and intravenous nutrition.
To treat reflux esophagitis, over the counter antacids, medications that reduce acid production (H-2 receptor blockers), and proton pump inhibitors are recommended to help block acid production and to let the esophagus heal. Some prescription medications to treat reflux esophagitis include higher dose H-2 receptor blockers, proton pump inhibitors, and prokinetics, which help with the emptying of the stomach.
To treat eosinophilic esophagitis, avoiding any allergens that may be stimulating the eosinophils is recommended. As for medications, proton pump inhibitors and steroids can be prescribed. Steroids that are used to treat asthma can be swallowed to treat eosinophil esophagitis due to nonfood allergens. The removal of food allergens from the diet is included to help treat eosinophilic esophagitis.
For infectious esophagitis, a medicine is prescribed based on what type of infection is causing the esophagitis. These medicines are prescribed to treat bacterial, fungal, viral, and/or parasitic infections.
An endoscopy can be used to remove ill fragments. Surgery can be done to remove the damaged part of the esophagus. For reflux esophagitis, a fundooplication can be done to help strengthen the lower esophageal sphincter from allowing backflow of the stomach into the esophagus. As for patients that have a narrowing esophagus, a gastroenterologist can perform a procedure to dilate the esophagus.
Some home remedies and lifestyle changes to help with esophagitis include losing weight, stop smoking, lowering stress, avoid sleeping/lying down after eating, raise your head while laying down, taking medicines correctly, avoiding certain medications, and avoiding foods that cause the reflux that might be causing the esophagitis.
If the disease remains untreated, it can cause scarring and discomfort in the esophagus. If the irritation is not allowed to heal, esophagitis can result in esophageal ulcers. Esophagitis can develop into Barrett's esophagus and can increase the risk of esophageal cancer.
The prognosis for a person with esophagitis depends on the underlying causes and conditions. If a patient has a more serious underlying cause such as a digestive system or immune system issue, it may be more difficult to treat. Normally, the prognosis would be good with no serious illnesses. If there are more causes than one, the prognosis could move to fair.
They are mainly observed in the Plummer–Vinson syndrome, which is associated with chronic iron deficiency anemia. One in 10 patients with Plummer-Vinson syndrome will eventually develop squamous cell carcinoma of the esophagus, but it is unclear if esophageal webs in and of themselves are a risk factor.
Esophageal webs are associated with bullous diseases (such as epidermolysis bullosa, pemphigus, and bullous pemphigoid), with graft versus host disease involving the esophagus, and with celiac disease.
Esophageal webs are more common in white individuals and in women (with a ratio 2:1). The literature describes relations between these webs and Plummer-Vinson Syndrome, bullous dermatologic disorders, inlet patch, graft-versus-host disease and celiac disease. The postulated mechanisms are sideropenic anemia (mechanism unknown) or some interference of the immune system.
Esophageal webs can be ruptured during upper endoscopy.
Esophageal webs and rings can be treated with endoscopic dilation.
Barrett's esophagus occurs due to chronic inflammation. The principal cause of the chronic inflammation is gastroesophageal reflux disease, GERD (UK: GORD). In this disease, acidic stomach, bile, and small intestine and pancreatic contents cause damage to the cells of the lower esophagus. Recently, bile acids were shown to be able to induce intestinal differentiation, in gastroesophageal junction cells, through inhibition of the epidermal growth factor receptor (EGFR) and the protein kinase enzyme Akt. This results in the eventual up-regulation of the p50 subunit of protein complex NF-κB ("NFKB1"), and ultimately activation of the homeobox gene "CDX2", which is responsible for the expression of intestinal enzymes such as guanylate cyclase 2C. This mechanism also explains the selection of HER2/neu (also called ERBB2) and the overexpressing (lineage-addicted) cancer cells during the process of carcinogenesis, and the efficacy of targeted therapy against the Her-2 receptor with trastuzumab (Herceptin) in the treatment of adenocarcinomas at the gastroesophageal junction.
Researchers are unable to predict who with heartburn will develop Barrett's esophagus. While no relationship exists between the severity of heartburn and the development of Barrett's esophagus, a relationship does exist between chronic heartburn and the development of Barrett's esophagus. Sometimes, people with Barrett's esophagus have no heartburn symptoms at all. In rare cases, damage to the esophagus may be caused by swallowing a corrosive substance such as lye.