Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with HPV-mediated oropharyngeal cancer tend to have higher survival rates. The prognosis for people with oropharyngeal cancer depends on the age and health of the person and the stage of the disease. It is important for people with oropharyngeal cancer to have follow-up exams for the rest of their lives, as cancer can occur in nearby areas. In addition, it is important to eliminate risk factors such as smoking and drinking alcohol, which increase the risk for second cancers.
The risk factors that can increase the risk of developing oropharyngeal cancer are:
- Smoking and chewing tobacco
- Heavy alcohol use
- A diet low in fruits and vegetables
- Chewing betel quid, a stimulant commonly used in parts of Asia
- Mucosal infection with human papilloma virus (HPV) (HPV-mediated oropharyngeal cancer)
- HPV infection
- Plummer-Vinson syndrome
- Poor nutrition
- Asbestos exposure
Certain genetic changes including: P53 mutation and CDKN2A (p16) mutations.
High-risk lesions:
- Erythroplakia
- Speckled erythroplakia
- Chronic hyperplastic candidiasis
Medium-risk lesions:
- Oral submucosal fibrosis
- Syphilitic glossitis
- Sideropenic dysphagia (or Paterson-Kelly-Brown syndrome)
Low-risk lesions:
- Oral lichen planus
- Discoid lupus erythematosus
- Discoid keratosis congenita
Squamous cell carcinoma of eye tissues is one of the most frequent neoplasms of cattle.
When associated with the lung, it is typically a centrally located large cell cancer (non-small cell lung cancer or NSCLC). It often has a paraneoplastic syndrome causing ectopic production of parathyroid hormone-related protein (PTHrP), resulting in hypercalcemia, however paraneoplastic syndrome is more commonly associated with small cell lung cancer.
It is primarily due to smoking.
Smoking and alcohol abuse as the major risk factors. Viral causes has recently been taken under consideration as one of the risk factors. Viruses such as Epstein-Barr virus (EBV) (majorly involved in causing nasopharyngeal carcinoma) and human papilloma virus are included in this category. Chewing of betel nut ("Areca catechu") quid has been directly associated to cause oral cancers. It has also been stated under the FDA poisonous plant data base by the U.S Food and Drug Administration
An unbalanced diet, deficit in fruits and vegetables has shown to increase the risk of cancer.
Human papillomavirus infection (HPV) has been associated with SCC of the oropharynx, lung, fingers and anogenital region.
The exact cause of VIN is unknown. Studies are being done to determine the cause of VIN. The following factors have been associated with VIN:
- HPV (Human Papilloma Virus)
- HSV-2 (Herpes simplex Virus - Type 2)
- Smoking
- Immunosuppression
- Chronic vulvar irritation
- Conditions such as Lichen Sclerosus
Normally found in children or young adults, a common cause of conjunctival squamous cell papilloma is during childbirth, when the mother passes the virus to her child.
Between 250,000 and 1 million American women are diagnosed with CIN annually. Women can develop CIN at any age, however women generally develop it between the ages of 25 to 35.
The incidence of squamous cell carcinoma continues to rise around the world. A recent study estimated that there are between 180,000 and 400,000 cases of SCC in the United States in 2013. Risk factors for squamous cell carcinoma varies with age, gender, race, geography, and genetics. The incidence of SCC increases with age and the peak incidence is usually around 60 years old. Males are affected with SCC at a ratio of 2:1 in comparison to females. Caucasians are more likely to be affected, especially those with fair Celtic skin and chronically exposed to UV radiation. Squamous cell carcinoma of the skin is the most common among all sites of the body. Solid organ transplant recipients (heart, lung, liver, pancreas, among others) are also at a heightened risk of developing aggressive, high-risk SCC. There are also a few rare congenital diseases predisposed to cutaneous malignancy. In certain geographic locations, exposure to arsenic in well water or from industrial sources may significantly increase the risk of SCC.
Vaccinating girls with HPV vaccine before their initial sexual contact has been claimed to reduce incidence of VIN.
People who have received solid organ transplants are at a significantly increased risk of developing squamous cell carcinoma due to the use of chronic immunosuppressive medication. While the risk of developing all skin cancers increases with these medications, this effect is particularly severe for SCC, with hazard ratios as high as 250 being reported, versus 40 for basal cell carcinoma. The incidence of SCC development increases with time posttransplant. Heart and lung transplant recipients are at the highest risk of developing SCC due to more intensive immunosuppressive medications used. Squamous cell cancers of the skin in individuals on immunotherapy or suffering from lymphoproliferative disorders (i.e. leukemia) tend to be much more aggressive, regardless of their location. The risk of SCC, and non-melanoma skin cancers generally, varies with the immunosuppressive drug regimen chosen. The risk is greatest with calcineurin inhibitors like cyclosporine and tacrolimus, and least with mTOR inhibitors, such as sirolimus and everolimus. The antimetabolites azathioprine and mycophenolic acid have an intermediate risk profile.
It used to be thought that cases of CIN progressed through these stages toward cancer in a linear fashion.
However most CIN spontaneously regress. Left untreated, about 70% of CIN-1 will regress within one year, and 90% will regress within two years. About 50% of CIN 2 will regress within 2 years without treatment.
Progression to cervical carcinoma in situ (CIS) occurs in approximately 11% of CIN1 and 22% of CIN2. Progression to invasive cancer occurs in approximately 1% of CIN1, 5% in CIN2 and at least 12% in CIN3.
Progression to cancer typically takes 15 (3 to 40) years. Also, evidence suggests that cancer can occur without first detectably progressing through these stages and that a high grade intraepithelial neoplasia can occur without first existing as a lower grade.
It is thought that the higher risk HPV infections, have the ability to inactivate tumor suppressor genes such as the p53 gene and the RB gene, thus allowing the infected cells to grow unchecked and accumulate successive mutations, eventually leading to cancer.
Treatment does not affect the chances of getting pregnant but does increase the risk of second trimester miscarriages.
Squamous cell papilloma of the mouth or throat is generally diagnosed in people between the ages of 30 and 50, and is normally found on the inside of the cheek, on the tongue, or inside of lips. Oral papillomas are usually painless, and not treated unless they interfere with eating or are causing pain. They do not generally mutate to cancerous growths, nor do they normally grow or spread. Oral papillomas are most usually a result of the infection with types HPV-6 and HPV-11.
Around 75% of cases are caused by alcohol and tobacco use.
Tobacco smoke is one of the main risk factors for head and neck cancer and one of the most carcinogenic compounds in tobacco smoke is acrylonitrile. (See Tobacco smoking). Acrylonitrile appears to indirectly cause DNA damage by increasing oxidative stress, leading to increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG) and formamidopyrimidine in DNA (see image). Both 8-oxo-dG and formamidopyrimidine are mutagenic. DNA glycosylase NEIL1 prevents mutagenesis by 8-oxo-dG and removes formamidopyrimidines from DNA.
However, cigarette smokers have a lifetime increased risk for head and neck cancers that is 5- to 25-fold increased over the general population.
The ex-smoker's risk for squamous cell cancer of the head and neck begins to approach the risk in the general population twenty years after smoking cessation. The high prevalence of tobacco and alcohol use worldwide and the high association of these cancers with these substances makes them ideal targets for enhanced cancer prevention.
Smokeless tobacco is cause of oral and pharyngeal cancers (oropharyngeal cancer). Cigar smoking is an important risk factor for oral cancers as well.
Other environmental carcinogens suspected of being potential causes of head and neck cancer include occupational exposures such as nickel refining, exposure to textile fibers, and woodworking. Use of marijuana, especially while younger, is linked to an increase in squamous-cell carcinoma cases while other studies suggest use is not shown to be associated with oral squamous cell carcinoma, or associated with decreased squamous cell carcinoma.
Immunotherapy with immune checkpoint inhibitors is being investigated in head and neck cancers.
Immunoperoxidase stains have identified antigens of the human papillomavirus (HPV) types 6 and 11 in approximately 50% of cases of squamous cell papilloma.
The two major risk factors for esophageal squamous-cell carcinoma are tobacco (smoking or chewing) and alcohol. The combination of tobacco and alcohol has a strong synergistic effect. Some data suggest that about half of all cases are due to tobacco and about one-third to alcohol, while over three-quarters of the cases in men are due to the combination of smoking and heavy drinking. Risks associated with alcohol appear to be linked to its aldehyde metabolite and to mutations in certain related enzymes. Such metabolic variants are relatively common in Asia.
Other relevant risk factors include regular consumption of very hot drinks (over 65 °C)(149 Fahrenheit) and ingestion of caustic substances. High levels of dietary exposure to nitrosamines (chemical compounds found both in tobacco smoke and certain foodstuffs) also appear to be a relevant risk factor. Unfavorable dietary patterns seem to involve exposure to nitrosamines through processed and barbecued meats, pickled vegetables, etc., and a low intake of fresh foods. Other associated factors include nutritional deficiencies, low socioeconomic status, and poor oral hygiene. Chewing betel nut (areca) is an important risk factor in Asia.
Physical trauma may increase the risk. This may include the drinking of very hot drinks.
Conjunctival Squamous Cell Carcinoma (Conjunctival SCC) and corneal intraepithelial neoplasia comprise what are called Ocular Surface Squamous Cell Neoplasias. SCC is the most common malignancy of the conjunctiva in the US, with a yearly incidence of 1-2.8 per 100,000. Risk factors for the disease are exposure to sun (specifically occupational), exposure to UVB, and light-colored skin. Other risk factors include radiation, smoking, HPV, arsenic, and exposure to polycyclic hydrocarbons.
Conjunctival SCC is often asymptomatic at first, but it can present with the presence of a growth, red eye, pain, itching, burning, tearing, sensitivity to light, double vision, and decreased vision.
Spread of conjunctival SCC can occur in 1-21% of cases, with the first site of spread being the regional lymph nodes. Mortality for conjunctival SCC ranges from 0-8%.
Diagnosis is often made by biopsy, as well as CT (in the case of invasive SCC).
Treatment of Conjunctival SCC is usually surgical excision followed by cryotherapy. After this procedure, Conjunctival SCC can recur 8-40% of the time. Radiation treatment, topical Mitomycin C, and removal of the contents of the orbit, or exenteration, are other methods of treatment. Close follow-up is recommended, because the average time to recurrence is 8–22 months.
Keratoacanthoma usually occurs in older individuals. As with squamous cell cancer, it seems likely that ultraviolet light from the sun causes the development of KA. As with squamous cell cancer, sporadic cases have been found co-infected with the human papilloma virus (HPV).
Many new treatments for Melanoma are also known to increase the rate of Keratoacanthoma, such as the B-Raf inhibitor drugs Vemurafenib and Dabrafenib.
Head and neck cancers are malignant neoplasms that arise in the head and region which comprises nasal cavity, paranasal sinuses, oral cavity, salivary glands, pharynx, and larynx. Majority of head and neck cancers histologically belong to squamous cell type and hence they are categorized as Head and Neck Squamous Cell Carcinoma (abbreviated as HNSCC)[Forastiere AA, 2003]. HNSCC are the 6th most common cancers worldwide and 3rd most common cancers in developing world. They account for ~ 5% of all malignancies worldwide (Ferlay J, 2010) and 3% of all malignancies in the United States (Siegel R, 2014).
Risk factors include tobacco consumption (chewing or smoking), alcohol consumption, Epstein-Barr virus (EBV) infection, human papilloma virus (HPV; esp. HPV 16, 18) infection, betel nut chewing, wood dust exposures, consumption of certain salted fish and others (NCI Factsheet, 2013). EBV infection has been specifically associated with nasopharyngeal cancer. Reverse smoking was considered as a risk factor for oral cancer. Interestingly, "Cis-retinoic acid" (i.e. supplements of retinoic acid) intake may increase the risk of HNSCC in active smokers. Low consumption of fruits and vegetables was associated with higher incidence of HNSCC.
HNSCC classification: Based on the HPV infection status, head and neck cancers are classified into HPV-positive and HPV-negative categories. So far, this is the only available molecular classification. Majority (>50%) of oral cancers are HPV-positive in the U.S. HPV-positive oral cancers are widely prevalent in younger patients and are associated with multiple sexual partners and oral sexual practices. HPV-positive cancers have better prognosis, especially for nonsmokers as compared to HPV-negative cancers.
Staging and grading of HNSCC: HNSCC are classified according to the tumor-node-metastasis (TNM) system of American Joint Committee on cancer. TNM staging system for HNSCC are discussed else where.
Symptoms include lump or sore, sore throat, hoarse of voice, difficulty in swallowing etc (NCI Factsheet, 2013).
Treatment for HNSCC is predominantly based on the stage of the disease. Factors such as patient fitness, baseline swallow, airway functional status, and others are considered before determining the treatment plan. Standard of care for HNSCC includes one or combination of the following: surgery, radiation, chemotherapeutic agents such as Cisplatin, 5-Flurouracil (5-FU) etc. Molecularly targeted therapies were developed since the discovery of role of epidermal growth factor receptor (EGFR) signaling in HNSCC development, progression and prognosis. These targeted therapies include monoclonal antibodies (such as cetuximab, panitumumab etc.) and tyrosine kinase inhibitors (such as erlotinib, gefitinib, etc.). Among these EGFR-targeting agents, only cetuximab has been approved by FDA in 2006 for HNSCC treatment.
Ninety percent (MacMillan, 2015) of cases of head and neck cancer (cancer of the mouth, nasal cavity, nasopharynx, throat and associated structures) are due to squamous cell carcinoma. Symptoms may include a poorly healing mouth ulcer, a hoarse voice or other persistent problems in the area. Treatment is usually with surgery (which may be extensive) and radiotherapy. Risk factors include smoking, alcohol consumption and hematopoietic stem cell transplantation (Elad S, Zadik Y, Zeevi I, et al., 2010, pp. 1243–1244). In addition, recent studies show that about 25% of mouth and 35% of throat cancers are associated with HPV. The 5 year disease free survival rate for HPV positive cancer is significantly higher when appropriately treated with surgery, radiation and chemotherapy as compared to non-HPV positive cancer, substantiated by multiple studies including research conducted by Maura Gillison, "et al." of Johns Hopkins Sidney Kimmel Cancer Center.
Tobacco smoking or chewing is the most common causative factor, with more than 80% of persons with leukoplakia having a positive smoking history. Smokers are much more likely to suffer from leukoplakia than non-smokers. The size and number of leukoplakia lesions in an individual is also correlated with the level of smoking and how long the habit has lasted for. Other sources argue that there is no evidence for a direct causative link between smoking and oral leukoplakia. Cigarette smoking may produce a diffuse leukoplakia of the buccal mucosa, lips, tongue and rarely the floor of mouth. Reverse smoking, where the lit end of the cigarette is held in the mouth is also associated with mucosal changes. Tobacco chewing, e.g. betel leaf and areca nut, called paan, tends to produce a distinctive white patch in a buccal sulcus termed "tobacco pouch keratosis". In the majority of persons, cessation triggers shrinkage or disappearance of the lesion, usually within the first year after stopping.
Although the synergistic effect of alcohol with smoking in the development of oral cancer is beyond doubt, there is no clear evidence that alcohol is involved in the development of leukoplakia, but it does appear to have some influence. Excessive use of a high alcohol containing mouth wash (> 25%) may cause a grey plaque to form on the buccal mucosa, but these lesions are not considered true leukoplakia.
Tonsillar carcinoma can be either HPV related or HPV unrelated. It is shown that cases which are HPV positive have a better prognosis than those with HPV negative oropharyngeal cancer.
A squamous intraepithelial lesion (SIL) is an abnormal growth of epithelial cells on the surface of the cervix, commonly called squamous cells. This condition can lead to cervical cancer, but can be diagnosed using a Pap smear or a colposcopy. It can be treated by using methods that remove the abnormal cells, allowing normal cells to grow in their place. In the Bethesda system, the cytology can be graded as LSIL (low-grade squamous intraepithelial lesion) or HSIL (high-grade squamous intraepithelial lesion).