Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Panayiotopoulos syndrome is probably genetically determined, though conventional genetic influences may be less important than other mechanisms. Usually, there is no family history of similar seizures, although siblings with Panayiotopoulos syndrome or Panayiotopoulos syndrome and rolandic epilepsy or, less common, Panayiotopoulos syndrome and idiopathic childhood occipital epilepsy of Gastaut have been reported. There is a high prevalence of febrile seizures (about 17%).
SCN1A mutations have been reported in a child and in 2 siblings with relatively early onset of seizures, prolonged time over which many seizures have occurred, and strong association of seizures with febrile precipitants even after the age of 5 years. However, no such mutations were found in another couple of siblings and many other cases with typical Panayiotopoulos syndrome. These data indicate that SCN1A mutations when found contribute to a more severe clinical phenotype of Panayiotopoulos syndrome.
The mortality rate ranges from 3–7% in a mean follow up period of 8.5 to 9.7 years. Death is often related to accidents.
Dravet syndrome is a severe form of epilepsy. It is a rare genetic disorder that affects an estimated 1 in every 20,000–40,000 births.
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
Two international research studies are currently underway. The International Genetic Study done with the Spinner Laboratory at The Children's Hospital of Philadelphia studies the ring 20 chromosome at the molecular level. The Clinical Research Study collects clinical information from parents to create a database of about the full spectrum of patients with ring chromosome 20 syndrome.
Kohlschütter-Tönz syndrome (KTS), also called Amelo-cerebro-hypohidrotic syndrome is a rare inherited syndrome characterized by epilepsy, dementia, intellectual disability, and yellow teeth caused by amelogenesis imperfecta (abnormal formation of tooth enamel). It is a type A ectodermal dysplasia.
It is autosomal recessive and symptoms appear in early childhood. The syndrome was first described in 1974 by Alfried Kohlschütter and colleagues. Only 24 affected individuals are known as of 2012. The disease has not been connected to any other known epileptic syndromes. Some but not all cases are associated with mutations in a gene called ROGDI. Another gene that has been associated with this condition is the SCL13A5 gene Diagnoses of this syndrome have occurred in Switzerland, Sicily, the Northern Israel Druze community as well as some other parts of Western Europe.
People with epilepsy are at an increased risk of death. This increase is between 1.6 and 4.1 fold greater than that of the general population and is often related to: the underlying cause of the seizures, status epilepticus, suicide, trauma, and sudden unexpected death in epilepsy (SUDEP). Death from status epilepticus is primarily due to an underlying problem rather than missing doses of medications. The risk of suicide is increased between two and six times in those with epilepsy. The cause of this is unclear. SUDEP appears to be partly related to the frequency of generalized tonic-clonic seizures and accounts for about 15% of epilepsy related deaths. It is unclear how to decrease its risk. The greatest increase in mortality from epilepsy is among the elderly. Those with epilepsy due to an unknown cause have little increased risk. In the United Kingdom, it is estimated that 40–60% of deaths are possibly preventable. In the developing world, many deaths are due to untreated epilepsy leading to falls or status epilepticus.
In Panayiotopoulos syndrome there is a diffuse multifocal cortical hyperexcitability, which is age (maturation)-related. This diffuse epileptogenicity may be unequally distributed, predominating in one area, which is often posterior. Epileptic discharges in Panayiotopoulos syndrome, irrespective of their location at onset, activate emetic and autonomic centers prior to any other conventional neocortical seizure manifestations. An explanation for this is that children are susceptible to autonomic disorders as illustrated by the cyclic vomiting syndrome, which is a nonepileptic condition specific to childhood.
Panayiotopoulos syndrome and all other benign childhood focal seizures, with rolandic epilepsy as their main representative, are probably linked due to a common, genetically-determined, mild, and reversible functional derangement of the brain cortical maturational process that Panayiotopoulos proposed as "benign childhood seizure susceptibility syndrome". The various EEG and seizure manifestations often follow an age- (maturation-) related localization. Panayiotopoulos syndrome is probably the early onset phenotype of the benign childhood seizure susceptibility syndrome.
During a recorded autonomic seizure, there was a small increase in blood pressure (+5/4 mm Hg, systolic/diastolic), pronounced increases in heart rate (+59 bpm) and plasma concentrations of norepinephrine (+242 pg/mL), epinephrine (+175 pg/mL), and vasopressin (+22.1 pg/mL); serum glucose was also elevated (206 mg/dL). The significant increase in plasma vasopressin may explain the emetic autonomic symptoms.
The National Institute of Health Office and Rare Disease Research characterizes PCDH19 gene-related epilepsy as a rare disorder. Rare diseases, by definition, are diseases that affect fewer than 200,000 people in the United States. Since the mutation associated with PCDH19 gene-related epilepsy was only recently identified in 2008, the true incidence of the disease is generally unknown.
Although formal epidemiologic data is not available, results from diagnostic screening indicates that approximately 1 out of 10 girls who have seizure onset before five years of age may have PCDH19 gene mutations. Additionally, PCDH19 screening of several large cohorts of females with early onset febrile-related epilepsy has resulted in a rate of approximately 10% of mutation-positive individuals.
Diagnosis occurs based on the two most common features of this syndrome: epilepsy and symmetrical enamel hypoplasia also known as Amelogenesis Imperfecta. Because the tooth discoloration caused by amelogensis imperfecta is often thought to be caused by environmental factors or other diseases, diagnosis of this syndrome is sometimes overlooked. The onset of symptoms can occur when the patient is between one month and four years old, contributing to the misconception that tooth discoloration is due to the environment.
LGS is seen in approximately 4% of children with epilepsy, and is more common in males than in females. Usual onset is between the ages of three and five. Children can have no neurological problems prior diagnosis, or have other forms of epilepsy. West syndrome is diagnosed in 20% of patients before it evolves into LGS at about 2 years old.
Limited data is available for the long-term prognosis of ring chromosome 20 syndrome since only over 60 patients with this syndrome have been reported in published literature. Optimal control of seizures appears to be the determining factor, but early diagnosis and a comprehensive management plan with multidisciplinary support is also thought be to be important.
Life expectancy is only moderately affected by NE because the rate of disease progression is slow. Patients usually survive past 40-50 years of age.
The age of onset ranges from 1 to 14 years with 75% starting between 7–10 years. There is a 1.5 male predominance, prevalence is around 15% in children aged 1–15 years with non-febrile seizures and incidence is 10–20/100,000 of children aged 0–15 years
Symptoms of OI are triggered by the following:
- An upright posture for long periods of time (e.g. standing in line, standing in a shower, or even sitting at a desk).
- A warm environment (such as in hot summer weather, a hot crowded room, a hot shower or bath, after exercise).
- Emotionally stressful events (seeing blood or gory scenes, being scared or anxious).
- Astronauts returning from space not yet re-adapted to gravity.
- Extended bedrest
- Inadequate fluid and salt intake.
Orthostatic intolerance (OI) is the development of symptoms when standing upright which are relieved when reclining. There are many types of orthostatic intolerance. OI can be a subcategory of dysautonomia, a disorder of the autonomic nervous system occurring when an individual stands up.
There is a substantial overlap between syndromes of orthostatic intolerance on the one hand, and either chronic fatigue syndrome (CFS) or fibromyalgia (FM) on the other. It affects more women than men (female-to-male ratio is at least 4:1), usually under the age of 35.
Orthostatic intolerance occurs in humans because standing upright is a fundamental stressor and requires rapid and effective circulatory and neurologic compensations to maintain blood pressure, cerebral blood flow, and consciousness. When a human stands, approximately 750 mL of thoracic blood is abruptly translocated downward. People who suffer from OI lack the basic mechanisms to compensate for this deficit. Changes in heart rate, blood pressure, and cerebral blood flow that produce OI may be caused by abnormalities in the interactions between blood volume control, the cardiovascular system, the nervous system and circulation control system.
Most people with PNES (75%) are women, with onset in the late teens to early twenties being typical.
Some studies have reported an elevated frequency of childhood abuse in people with PNES. However, others that have controlled for other demographic factors have failed to find a higher rate of reported childhood abuse than in a comparable groups with organic disease (usually epilepsy).
A number of studies have also reported a high incidence of abnormal personality traits or personality disorders in people with PNES such as borderline personality. However, again, when an appropriate control group is used, the incidence of such characteristics it not always higher in PNES than in similar illnesses arising due to organic disease (e.g., epilepsy).
Other risk factors for PNES include having a diagnosis of epilepsy, having recently had a head injury or recently undergone neurosurgery.
Seizure frequency is reduced to four to six seizures per year. By this time, they are mentally and physically incapable to live without assistance due to the total mental degradation. Life expectancy is at least 50 years of age, which is shorter than the average worldwide age of 70.
Generalized epilepsy with febrile seizures plus (GEFS+) is a syndromic autosomal dominant disorder where afflicted individuals can exhibit numerous epilepsy phenotypes. GEFS+ can persist beyond early childhood (i.e., 6 years of age). GEFS+ is also now believed to encompass three other epilepsy disorders: severe myoclonic epilepsy of infancy (SMEI), which is also known as Dravet's syndrome, borderline SMEI (SMEB), and intractable epilepsy of childhood (IEC). There are at least six types of GEFS+, delineated by their causative gene. Known causative genes are the sodium channel α subunit genes SCN1A, an associated β subunit SCN1B, and a GABA receptor γ subunit gene, GABRG2 and there is another gene related with calcium channel the PCDH19 which is also known as Epilepsy Female with Mental Retardation. Penetrance for this disorder is estimated at approximately 60%.
In 82% of epilepsy patients the heart rate increases quickly and suddenly upon a seizure This is known as ictal tachycardia. Ictal tachycardia is so characteristic that it can be distinguished from the slow gradual increase of heart rate that occurs during physical activity. This way in the majority of epilepsy patients seizures can be detected in the ECG. In addition to classical VNS, some new VNS generators continuously monitor heart rate and identify fast and sudden heart rate increases associated with seizures with intelligent software. Then an automatic additional stimulation can be triggered to interrupt, prevent or alleviate the seizure. This new generator type was shown to detect and treat at least four out of five seizures and 60% of seizures were shown to be interrupted with this heart-rate triggered stimulation. The earlier in the course of the seizure the stimulation occurred the quicker the seizure ended generally seizures were shown to be reduced by around 35% by stimulation
Seizures in cats are caused by various onsets. Cats can have reactive, primary (idiopathic) or secondary seizures. Idiopathic seizures are not as common in cats as in dogs however a recent study conducted showed that of 91 feline seizures, 25% were suspected to have idiopathic epilepsy. In the same group of 91 cats, 50% were secondary seizures and 20% reactive.
Idiopathic generalized epilepsy (IGE) is a group of epileptic disorders that are believed to have a strong underlying genetic basis. Patients with an IGE subtype are typically otherwise normal and have no structural brain abnormalities. People also often have a family history of epilepsy and seem to have a genetically predisposed risk of seizures. IGE tends to manifest itself between early childhood and adolescence although it can be eventually diagnosed later. The genetic cause of some IGE types is known, though inheritance does not always follow a simple monogenic mechanism.
Drug-resistant epilepsy (DRE), also known as refractory epilepsy or pharmacoresistant epilepsy, is defined as failure of adequate trials of two tolerated and appropriately chosen and used antiepileptic drugs (AED schedules) (whether as monotherapies or in combination) to achieve sustained seizure freedom. The probability that the next medication will achieve seizure freedom drops with every failed AED; for example after two failed AEDs the probability that the third will achieve seizure freedom is around 4%. Drug-resistant epilepsy is commonly diagnosed after several years of uncontrolled seizures however in most cases it is evident much earlier. Approximately 30% of people with epilepsy have a drug-resistant form.
When 2 AEDs regimens have failed to produce sustained seizure-freedom, it is important to initiate other treatments to control seizures. Next to indirect consequences like injuries from falls, accidents, drowning and impairment in daily life, seizure control is critical because uncontrolled seizures -specifically generalized tonic clonic seizures- can damage the brain and increase the risk for sudden unexpected death in epilepsy called SUDEP. The first step is for physicians to refer their DRE patients to an epilepsy center in which a presurgical evaluation can be carried out in order to assess whether a patient is a candidate for epilepsy surgery or not. For those patients who are not surgical candidates, those who decline brain surgery or those in which brain surgery fails to produce long term seizure freedom, vagus nerve stimulation and/or a diet can be recommended.
Onset is between 3 and 15 years of age with a mean of around 8. Both sexes are equally affected. The disorder accounts for about 2–7% of benign childhood focal seizures.
A 2008 study, found a relationship between the PCDH19 gene and early onset female seizures, with subsequent studies confirming the relationship.
PCDH19 gene-related epilepsy can arise as a single case in a family, due to a de novo error in cell replication, or it can be inherited. In a large series of cases in which inheritance was determined, half of the PCDH19 mutations occurred de novo, and half were inherited from fathers in good health, and who had no evidence of seizures or cognitive disorders.
Men and women can transmit the PCDH19 mutation, although females, but not males, usually, but not always, exhibit symptoms, which can be very mild. Females with a mutation have a 50% chance of having children who are carriers. Men have a 100% chance of transmitting the mutation to a daughter and 0% chance to a son.
Although males do not generally exhibit PCDH19 gene-related history such as cluster seizures, in a study involving four families with PCDH19 gene mutations, 5 of the fathers had obsessive and controlling tendencies. The linkage of chromosome Xq22.1 to PCDH19 gene-related epilepsy in females was confirmed in all of the families.
The inheritance pattern is very unusual, in that men that carry the PCDH19 gene mutation on their only X-chromosome are typically unaffected, except in rare instances of somatic mosaicism. Alternatively, approximately 90% of women, who have the mutation on one of their two X-chromosomes, exhibit symptoms. It has been suggested that the greater occurrence of PCDH19-epilepsy in females may relate to X-chromosome inactivation, through a hypothesized mechanism termed ‘‘cellular interference’’.
A 2011 study found instances where patients had PCDH19 mutation, but their parents did not. They found that "gonadal mosaicism” of a PCDH19 mutation in a parent is an important molecular mechanism associated with the inheritance of a mutated PCDH19 gene.