Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk of a subdural hematoma include very young or very old age. As the brain shrinks with age, the subdural space enlarges and the veins that traverse the space must travel over a wider distance, making them more vulnerable to tears. This and the fact that the elderly have more brittle veins make chronic subdural bleeds more common in older patients. Infants, too, have larger subdural spaces and are more predisposed to subdural bleeds than are young adults. For this reason, subdural hematoma is a common finding in shaken baby syndrome. In juveniles, an arachnoid cyst is a risk factor for a subdural hematoma.
Other risk factors for subdural bleeds include taking blood thinners (anticoagulants), long-term alcohol abuse, dementia, and the presence of a cerebrospinal fluid leak.
Subdural hematomas are most often caused by head injury, when rapidly changing velocities within the skull may stretch and tear small bridging veins. Subdural hematomas due to head injury are described as traumatic. Much more common than epidural hemorrhages, subdural hemorrhages generally result from shearing injuries due to various rotational or linear forces. Subdural hemorrhage is a classic finding in shaken baby syndrome, in which similar shearing forces classically cause intra- and pre-retinal hemorrhages. Subdural hematoma is also commonly seen in the elderly and in alcoholics, who have evidence of cerebral atrophy. Cerebral atrophy increases the length the bridging veins have to traverse between the two meningeal layers, hence increasing the likelihood of shearing forces causing a tear. It is also more common in patients on anticoagulants or antiplatelet drugs, such as warfarin and aspirin. Patients on these medications can have a subdural hematoma after a relatively minor traumatic event.
A further cause can be a reduction in cerebral spinal fluid pressure which can create a low pressure in the subarachnoid space, pulling the arachnoid away from the dura mater and leading to a rupture of the blood vessels.
Intracranial hemorrhage is a serious medical emergency because the buildup of blood within the skull can lead to increases in intracranial pressure, which can crush delicate brain tissue or limit its blood supply. Severe increases in intracranial pressure (ICP) can cause brain herniation, in which parts of the brain are squeezed past structures in the skull.
Intracranial bleeding occurs when a blood vessel within the skull is ruptured or leaks. It can result from physical trauma (as occurs in head injury) or nontraumatic causes (as occurs in hemorrhagic stroke) such as a ruptured aneurysm. Anticoagulant therapy, as well as disorders with blood clotting can heighten the risk that an intracranial hemorrhage will occur.
The most common cause of intracranial epidural hematoma is traumatic, although spontaneous hemorrhage is known to occur. Hemorrhages commonly result from acceleration-deceleration trauma and transverse forces. The majority of bleeds originate from meningeal arteries, particularly in the temporal region. 10% of epidural bleeds may be venous, due to shearing injury from rotational forces. Epidural hematoma commonly results from a blow to the side of the head. The pterion region which overlies the middle meningeal artery is relatively weak and prone to injury. Thus only 20 to 30% of epidural hematomas occur outside the region of the temporal bone. The brain may be injured by prominences on the inside of the skull as it scrapes past them. Epidural hematoma is usually found on the same side of the brain that was impacted by the blow, but on very rare occasions it can be due to a contrecoup injury.
Epidural hematoma is when bleeding occurs between the tough outer membrane covering the brain and the skull. Often there is loss of consciousness following a head injury, a brief regaining of consciousness, and then loss of consciousness again. Other symptoms may include headache, confusion, vomiting, and an inability to move parts of the body. Complications may include seizures.
The cause is typically head injury that results in a break of the temporal bone and bleeding from the middle meningeal artery. Occasionally it can occur as a result of a bleeding disorder or blood vessel malformation. Diagnosis is typically by a CT scan or MRI. When this condition occurs in the spine it is known as a spinal epidural hematoma.
Treatment in generally by urgent surgery in the form of a craniotomy or burr hole. Without treatment death typically results. The condition occurs in one to four percent of head injuries. Typically it occurs in young adults. Males are more often affected than females.
A 1994 community-based study indicated that two out of every 100,000 people suffered from SCSFLS, while a 2004 emergency room-based study indicated five per 100,000. SCSFLS generally affects the young and middle aged; the average age for onset is 42.3 years, but onset can range from ages 22 to 61. In an 11-year study women were found to be twice as likely to be affected as men.
Studies have shown that SCSFLS runs in families and it is suspected that genetic similarity in families includes weakness in the dura mater, which leads to SCSFLS. Large scale population-based studies have not yet been conducted. While a majority of SCSFLS cases continue to be undiagnosed or misdiagnosed, an actual increase in occurrence is unlikely.
The anatomy of the epidural space is such that spinal epidural hematoma has a different presentation from intracranial epidural hematoma. In the spine, the epidural space contains loose fatty tissue and a network of large, thin-walled veins, referred to as the epidural venous plexus. The source of bleeding in spinal epidural hematoma is likely to be this venous plexus.
A cerebrospinal fluid leak (CSFL) is a medical condition where the cerebrospinal fluid(CSF) in the brain leaks out of the dura mater. This can be due to a spontaneous cerebrospinal fluid leak or result from different causes such as a lumbar puncture or physical trauma. While high CSF pressure can make lying down unbearable, low CSF pressure due to a leak can be relieved by lying flat on the back.
The most common symptoms of a CSFL is extremely high pressure in the head when sitting, standing, or bending down which can be lessened by laying down flat.
A myelogram can be used to help identify a CSFL by injecting a dye to further enhance the imaging allowing the location of the leak to be found. If it is a slow leak it may not appear on a single myelogram so more than one may be needed. Due to the ease of the procedure no anesthesia is used however a local anesthetic is given.
An epidural blood patch is the normal treatment for a CSFL, the patient's blood is drawn and it is then injected into the lumbar spine. Patients are told to lie flat without moving from 2 to 24 hours after the blood patch is done. A blood patch can be used to patch a CSFL in the cervical neck although it is rare for it to be done in that location, though it may take more than one blood patch to fully close the leak. Anesthesia is also uncommon for blood patch procedures. If you have a low pain tolerance it would be a good idea to have anesthesia for all of the procedures.
If the leak is strong or fast, the loss of CSF fluid can cause the brain to drop inside the skull due to the body's inability to replenish the CSF fluid at a quick enough pace, which would show up on a MRI of the brain. This is called a Chiari malformation where the brain is lower in the skull almost in the spinal canal.
Final outcomes for people with SCSFLS remain poorly studied. Symptoms may resolve in as little as two weeks, or persist for months. Less commonly, patients may suffer from unremitting symptoms for many years. People with chronic SCSFLS may be disabled and unable to work. Recurrent CSF leak at an alternate site after recent repair is common.
Spinal epidural hematoma is bleeding into the epidural space in the spine. These may arise spontaneously (e.g. during childbirth), or as a rare complication of epiduralanaesthesia or of surgery (such as laminectomy). Symptoms usually include back pain which radiates to the arms or the legs. They may cause pressure on the spinal cord or cauda equina, which may present as pain, muscle weakness, or dysfunction of the bladder and bowel.
The best way to confirm the diagnosis is MRI. Risk factors include anatomical abnormalities and bleeding disorders.
Treatment is generally with emergency surgery. The risk following epidural anaesthesia is difficult to quantify; estimates vary from 1 per 10,000 to 1 per 100,000 epidural anaesthetics.
Spinal epidural abscess (SEA) is a collection of pus or inflammatory granulation between the dura mater and the vertebral column. Currently the annual incidence rate of SEAs is estimated to be 2.5-3 per 10,000 hospital admissions. Incidence of SEA is on the rise, due to factors such as an aging population, increase in use of invasive spinal instrumentation, growing number of patients with risk factors such as diabetes and intravenous drug use. SEAs are more common in posterior than anterior areas, and the most common location is the thoracolumbar area, where epidural space is larger and contains more fat tissue.
SEAs are more common in males, and can occur in all ages, although highest prevalence is during the fifth and seventh decades of life.
Death occurs in about 10% of cases and people do well about 70% of the time. This is a large improvement from the 1960s due to improved ability to image the head, better neurosurgery and better antibiotics.
A cranial epidural abscess involves pus and granulation tissue accumulation in between the dura mater and cranial bone. These typically arise (along with osteomyelitis of a cranial bone) from infections of the ear or paranasal sinuses. They rarely can be caused by distant infection or an infected cerebral venous sinus thrombosis. Staphylococcus aureus is the most common pathogen. Symptoms include pain at the forehead or ear, pus draining from the ear or sinuses, tenderness overlying the infectious site, fever, neck stiffness, and in rare cases focal seizures. Treatment requires a combination of antibiotics and surgical removal of infected bone.
Anaerobic and microaerophilic cocci and gram-negative and gram-positive anaerobic bacilli are the predominate bacterial isolates. Many brain abscesses are polymicrobical. The predominant organisms include: "Staphylococcus aureus", aerobic and anaerobic streptococci (especially "Streptococcus intermedius"), "Bacteroides", "Prevotella", and "Fusobacterium" species, Enterobacteriaceae, "Pseudomonas" species, and other anaerobes. Less common organisms include: "Haemophillus influenzae", "Streptococcus pneumoniae" and "Neisseria meningitides".
Bacterial abscesses rarely (if ever) arise "de novo" within the brain, although establishing a cause can be difficult in many cases. There is almost always a primary lesion elsewhere in the body that must be sought assiduously, because failure to treat the primary lesion will result in relapse. In cases of trauma, for example in compound skull fractures where fragments of bone are pushed into the substance of the brain, the cause of the abscess is obvious. Similarly, bullets and other foreign bodies may become sources of infection if left in place. The location of the primary lesion may be suggested by the location of the abscess: infections of the middle ear result in lesions in the middle and posterior cranial fossae; congenital heart disease with right-to-left shunts often result in abscesses in the distribution of the middle cerebral artery; and infection of the frontal and ethmoid sinuses usually results in collection in the subdural sinuses.
A hematoma (US spelling) or haematoma (UK spelling) is a localized collection of blood outside the blood vessels, due to either disease or trauma including injury or surgery and may involve blood continuing to seep from broken capillaries. A hematoma is initially in liquid form spread among the tissues including in sacs between tissues where it may coagulate and solidify before blood is reabsorbed into blood vessels. An ecchymosis is a hematoma of the skin larger than 10mm.
They may occur among/within many areas such as skin and other organs, connective tissues, bone, joints and muscle.
A collection of blood (or even a hemorrhage) may be aggravated by anticoagulant medication (blood thinner). Blood seepage and collection of blood may occur if heparin is given via an intramuscular route; to avoid this, heparin must be given intravenously or subcutaneously.
It is not to be confused with hemangioma, which is an abnormal buildup/growth of blood vessels in the skin or internal organs.
Some hematomas are visible under the surface of the skin (commonly called bruises) or possibly felt as masses/lumps. Lumps may be caused by the limitation of the blood to a sac, subcutaneous or intramuscular tissue space isolated by fascial planes. This is a key anatomical feature that helps prevent injuries from causing massive blood loss. In most cases the hematoma such as a sac of blood eventually dissolves; however, in some cases they may continue to grow such as due to blood seepage or show no change. If the sac of blood does not disappear, then it may need to be surgically cleaned out/repaired.
The slow process of reabsorption of hematomas can allow the broken down blood cells and hemoglobin pigment to move in the connective tissue. For example, a patient who injures the base of his thumb might cause a hematoma, which will slowly move all through the finger within a week. Gravity is the main determinant of this process.
Hematomas on articulations can reduce mobility of a member and present roughly the same symptoms as a fracture.
In most cases, movement and exercise of the affected muscle is the best way to introduce the collection back into the blood stream.
A mis-diagnosis of a hematoma in the vertebra can sometimes occur; this is correctly called a hemangioma (buildup of cells) or a benign tumor.
Traumatic pneumorrhachis is a medical condition in which air has entered the spinal canal.
Traumatic pneumorrhachis is very rare phenomenon. Only eight cases with pneumorrhachis extending to more than one spinal region had been reported in the literature. Gordon had initially described the phenomenon of intraspinal air. The term "pneumorrhachis" was used for the first time by Newbold et al. The two subtypes of pneumorrhachis, which includes epidural or subarachnoid, are difficult to distinguish even with CT scanning. However, the presence of pneumocephalus goes more in favor of subarachnoid subtype. Goh and Yeo in their study have reported that the epidural pneumorrhachis is self-limited, whereas the more common subarachnoid pneumorrhachis type may be complicated by tension pneumocephalus and meningitis. Traumatic subarachnoid pneumorrhachis is almost always secondary to major trauma and is a marker of a severe injury. The pathophysiology described for it states that the penetrated air, which had led to the formation of pneumocephalus might have been forced caudally due to the raised intracranial pressure as a consequence of severe brain injury and patient's horizontal position allowing the entrapped air to pass through the foramen magnum into the spinal canal. Due to its rareness, asymptomatic presentation and myriad etiologies, no guidelines for its treatment or care has been described. Pneumorrhachis typically resolves spontaneously but occasionally it can have serious complications. Patient with subarachnoid pneumorrhachis should be treated meticulously and a temporary lumbar drainage may be required if they have concomitant cerebro-spinal fluid leak.
While any number of injuries may occur during the birthing process. A number of specific conditions are well described. Brachial plexus palsy occurs in 0.4 to 5.1 infants per 1000 live birth. Head trauma and brain damage during delivery can lead to a number of conditions include: caput succedaneum, cephalohematoma, subgaleal hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, epidural hemorrhage, and intraventricular hemorrhage.
The most common fracture during delivery is that of the clavicle (0.5%).
Common causes of head injury are motor vehicle traffic collisions, home and occupational accidents, falls, and assaults. Wilson's disease has also been indicative of head injury. According to the United States CDC, 32% of traumatic brain injuries (another, more specific, term for head injuries) are caused by falls, 10% by assaults, 16.5% by being struck or against something, 17% by motor vehicle accidents, 21% by other/unknown ways. In addition, the highest rate of injury is among children ages 0–14 and adults age 65 and older.
Sequelae can occur in both the mother and the infant after a traumatic birth.
Birth trauma is uncommon in the Western world in relation to rates in the third world. In the West injury occurs in 1.1% of C-sections.
Because of the unclear pathogenesis and pathophysiology of Tarlov cysts, there is no consensus on the optimal treatment of symptomatic sacral perineural cysts. Patients often choose to pursue treatment when the progression of neurological deficits seriously impacts their quality of life.
Since cysts are innervated, microfenestration and surgical sleeving of the cysts to diminish the amount of accumulated cerebrospinal fluid and decrease compression of the spine and spinal nerves has been successful in a number of patients. The cysts are carefully separated enough from surrounding tissue to be wrapped with fatty tissue or pericardial biomaterial to excise the fluid from the cyst. If the cyst does not drain spontaneously, then it is drained and patched using a biosynthetic dural patch.
The use of this technique is done in the U.S. and is spreading in Europe but recovery is generally extensive. Microfenestration alone has been done with some success in Asia.
A biopolymer plate is also being used experimentally to strengthen a sacrum thinned by cystic erosion by Dr. Frank Feigenbaum.
The risks of CSF leakage are higher on patients that have bilateral cysts on the same spinal level or clusters of cysts along multiple vertebrae, but immediate recognition of the leakage and repair can mitigate that risk.
Various treatment methods have been tried in the past, including the extraction of cerebrospinal fluids from the cyst, fibrin glue injection and the complete or partial removal of cyst. Epidurals can provide temporary relief but are not generally recommended as they can cause cysts to enlarge. Extraction of fluid can provide limited or no relief depending on rate the cysts refill and the need to repeat the procedure. Removal of the cyst results in irreversible damage to the intersecting spinal nerve.
Although fibrin-glue therapy initially had been thought to be a promising therapy in the treatment of these cysts, there have been multiple problems associated with the fibrin glue therapy including seepage of fibrin. It is no longer recommended for use at present by the Health Department in some countries and neurosurgeons previously performing the procedures.
Nevertheless, all types of surgical treatment pose common risks, including neurological deficits, infection and inflammation, spinal headache, urinary disturbances, and leakage of cerebrospinal fluids.
Here is an article for treatment of meningeal diverticulum. Feigenbaum F1, Henderson FC. Giant sacral meningeal diverticula: surgical implications of the "thecal tip" sign. Report of two cases. J Neurosurg Spine. 2006 Nov;5(5):443-6.
When Tarlov cysts are ruptured or drained they cause leakage of cerebrospinal fluid (CSF). Ruptures of Tarlov cysts have been reported associated with communicating aneurysms and from fracture in the proximity of the cysts. An undetected rupture can cause intracranial hypotension, including orthostatic neurological symptoms along with headache, nausea, and vomiting that improve when supine. The ruptured cysts can be patched either with a biosynthetic dural patch or using a blood patch to stem the flow of CSF.
In children with uncomplicated minor head injuries the risk of intra cranial bleeding over the next year is rare at 2 cases per 1 million. In some cases transient neurological disturbances may occur, lasting minutes to hours. Malignant post traumatic cerebral swelling can develop unexpectedly in stable patients after an injury, as can post traumatic seizures. Recovery in children with neurologic deficits will vary. Children with neurologic deficits who improve daily are more likely to recover, while those who are vegetative for months are less likely to improve. Most patients without deficits have full recovery. However, persons who sustain head trauma resulting in unconsciousness for an hour or more have twice the risk of developing Alzheimer's disease later in life.
Head injury may be associated with a neck injury. Bruises on the back or neck, neck pain, or pain radiating to the arms are signs of cervical spine injury and merit spinal immobilization via application of a cervical collar and possibly a long board.If the neurological exam is normal this is reassuring. Reassessment is needed if there is a worsening headache, seizure, one sided weakness, or has persistent vomiting.
To combat overuse of Head CT Scans yielding negative intracranial hemorrhage, which unnecessarily expose patients to radiation and increase time in the hospital and cost of the visit, multiple clinical decision support rules have been developed to help clinicians weigh the option to scan a patient with a head injury. Among these are the Canadian Head CT rule, the PECARN Head Injury/Trauma Algorithm, and the New Orleans/Charity Head Injury/Trauma Rule all help clinicians make these decisions using easily obtained information and noninvasive practices.
Treatment generally consists of surgical drainage, and long-term (6 to 8 weeks) use of antibiotics.