Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Helminths are common causes of hypereosiophilia and eosinophilia in areas endemic to these parasites. Helminths infections causing increased blood eosinophil counts include: 1) nematodes, (i.e. "Angiostrongylus cantonensis" and Hookworm infections), ascariasis, strongyloidiasis trichinosis, visceral larva migrans, Gnathostomiasis, cysticercosis, and echinococcosis; 2) filarioidea, i.e. tropical pulmonary eosinophilia, loiasis, and onchocerciasis; and 3) flukes, i.e. shistosomiasis, fascioliasis, clonorchiasis, paragonimiasis, and fasciolopsiasis. Other infections associated with increased eosinophil blood counts include: protozoan infections, i.e. "Isospora belli" and "Dientamoeba fragilis") and sarcocystis); fungal infections (i.e. disseminated histoplasmosis, cryptococcosis especially in cases with [[central nervous system]] involvement), and coccidioides); and viral infections, i.e. Human T-lymphotropic virus 1 and HIV.
Hypereosiophilia or eosinophilia may be associated with the following autoimmune diseases: systemic lupus erythematosus eosinophilic fasciitis, eosinophilic granulomatosis with polyangiitis, dermatomyositis, severe rheumatoid arthritis, progressive systemic sclerosis, Sjogren syndrome, thromboangiitis obliterans, Behcet syndrome, IgG4-related disease, inflammatory bowel diseases, sarcoidosis, bullous pemphigoid, and dermatitis herpetiformis.
Eosinophilia can be idiopathic (primary) or, more commonly, secondary to another disease. In the Western World, allergic or atopic diseases are the most common causes, especially those of the respiratory or integumentary systems. In the developing world, parasites are the most common cause. A parasitic infection of nearly any bodily tissue can cause eosinophilia.
Diseases that feature eosinophilia as a sign include:
- Allergic disorders
- Asthma
- Hay fever
- Drug allergies
- Allergic skin diseases
- Pemphigus
- Dermatitis herpetiformis
- IgG4-related disease
- Parasitic infections
- Addison's disease and stress-induced suppression of adrenal gland function
- Some forms of malignancy
- Acute lymphoblastic leukemia
- Chronic myelogenous leukemia
- Eosinophilic leukemia
- Clonal eosinophilia
- Hodgkin lymphoma
- Some forms of non-Hodgkin lymphoma
- Lymphocyte-variant hypereosinophilia
- Systemic mastocytosis
- Systemic autoimmune diseases
- Systemic lupus erythematosus
- Kimura disease
- Eosinophilic granulomatosis with polyangiitis
- Eosinophilic fasciitis
- Eosinophilic myositis
- Eosinophilic esophagitis
- Eosinophilic gastroenteritis
- Cholesterol embolism (transiently)
- Coccidioidomycosis (Valley fever), a fungal disease prominent in the US Southwest.
- Human immunodeficiency virus infection
- Interstitial nephropathy
- Hyperimmunoglobulin E syndrome, an immune disorder characterized by high levels of serum IgE
- Idiopathic hypereosinophilic syndrome.
- Congenital disorders
- Hyperimmunoglobulin E syndrome
- Omenn syndrome
- Familial eosinophilia
In cardiovascular disease, increased white blood cell counts have been shown to indicate a worse prognosis.
Hodgkin lymphoma (Hodgkin's disease) often elicits severe eosinophilia; however, non-Hodgkin lymphoma and leukemia produce less marked eosinophilia. Of solid tumor neoplasms, ovarian cancer is most likely to provoke eosinophilia, though any other cancer can cause the condition. Solid epithelial cell tumors have been shown to cause both tissue and blood eosinophilia, with some reports indicating that this may be mediated by interleukin production by tumor cells, especially IL-5 or IL-3. This has also been shown to occur in Hodgkin lymphoma, in the form of IL-5 secreted by Reed-Sternberg cells. In primary cutaneous T cell lymphoma, blood and dermal eosinophilia are often seen. Lymphoma cells have also been shown to produce IL-5 in these disorders. Other types of lymphoid malignancies have been associated with eosinophilia, as in lymphoblastic leukemia with a translocation between chromosomes 5 and 14 or alterations in the genes which encode platelet-derived growth factor receptors alpha or beta. Patients displaying eosinophilia overexpress a gene encoding an eosinophil hematopoietin. A translocation between chromosomes 5 and 14 in patients with acute B lymphocytic leukemia resulted in the juxtaposition of the IL-3 gene and the immunoglobulin heavy-chain gene, causing overproduction production of IL-3, leading to blood and tissue eosinophilia.
An increase in eosinophil granulocyte is known as eosinophilia.
Granulocytosis can be a feature of a number of diseases:
- Infection, especially bacterial
- Malignancy, most notably leukemia (it is the main feature of chronic myelogenous leukemia, CML)
- Autoimmune disease
The European Medicines Agency (EMA) estimated the prevalence of HES at the time of granting orphan drug designation for HES in 2004 at 1.5 in 100,000 people, corresponding to a current prevalence of about 8,000 in the EU, 5,000 in the U.S., and 2,000 in Japan.
Patients who lack chronic heart failure and those who respond well to Prednisone or a similar drug have a good prognosis. However, the mortality rate rises in patients with anaemia, chromosomal abnormalities or a very high white blood cell count.
There are many causes of eosinophilia that may underlie eosinophilic myocarditis. These causes are classified as primary (i.e. a defect intrinsic to the eosinophil cell line), secondary (induced by an underlying disorder that stimulates the proliferation and activation of eosinophils), or idiopathic (i.e. unknown cause). Non-idiopathic causes of the disorder are sub-classified into various forms of allergic, autoimmune, infectious, or malignant diseases and hypersensitivity reactions to drugs, vaccines, or transplanted hearts. While virtually any cause for the elevation and activation of blood eosinophils must be considered as a potential cause for eosinophilic myocarditis, the follow list gives the principal types of eosinophilia known or thought to underlie the disorder.
Primary conditions that may lead to eosinophilic myocarditis are:
- Clonal hypereosinophilia.
- Chronic eosinophilic leukemia.
- The idiopathic hypereosinophilic syndrome.
Secondary conditions that may lead to eosinophilic myocarditis are:
- Infections agents:
- Parasitic worms: various "Ascaris, Strongyloides, Schistosoma, filaria, Trematoda", and "Nematode" species. Parasitic infestations often cause significant heart valve disease along with myocarditis and the disorder in this setting is sometimes termed Tropical endomyocardial fibrosis. While commonly considered to be due to the cited parasites, this particular form of eosinophilic myocarditis may more often develop in individuals with other disorders, e.g. malnutrition, dietary toxins, and genetic predisposition, in addition to or place of round worm infestation.
- Infections by protozoa: various "Toxoplasma gondii, Trypanosoma cruzi, trichinella spiralis, Entamoeba", and "Echinococcus" species.
- Viruses: While some viral infections (e.g. HIV) have been considered causes of eosinophilic endocarditis, a study of 20 patients concluded that viral myocarditis lacks the characteristic of eosinophil-induced damage in hearts taken during cardiac transplantation.
- Allergic and autoimmune diseases such as severe asthma, rhinitis, or urticarial, chronic sinusitis, aspirin-induced asthma, allergic bronchopulmonary aspergillosis, chronic eosinophilic pneumonia, Kimura's disease, polyarteritis nodosa, eosinophilic granulomatosis with polyangiitis (i.e. Churg-Strauss syndrome), and rejection of transplanted hearts.
- Malignancies and/or premalignant hematologic conditions not due to a primary disorder in eosinophils such as Gleich's syndrome, Lymphocyte-variant hypereosinophilia Hodgkin disease, certain T-cell lymphomas, acute myeloid leukemia, the myelodysplastic syndromes, systemic mastocytosis, chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myelomonocytic leukemia, and T-lymphoblastic leukemia/lymphoma-associated or myelodysplastic–myeloproliferative syndrome-associated eosinophilias; IgG4-related disease and Angiolymphoid hyperplasia with eosinophilia as well as non-hematologic cancers such as solid tumors of the lung, gastrointestinal tract, and genitourinary tract.
- Hypersensitivity reactions to agents include:
- Antibiotics/anti-viral agents: various penicillins (e.g. penicillin, ampicillin), cephalosporins (e.g. cephalosporin), tetracyclins (e.g. tetracycline), sulfonamides (e.g. sulfadiazine, sulfafurazole), sulfonylureas, antituburcular drugs (e.g. isoniazid, 4-aminosalicylic acid), linezolid, amphotericin B, chloramphenicol, streptomycin, dapsone, nitrofurantoin, metronidazole, nevirapine, efavirenz, abacavir, nevirapine.
- Anticonvulsants/Antipsychotics/antidepressants: phenindione, phenytoin, phenobarbital, lamotrigine, lamotrigine, clozapine, valproic acid, carbamazepine, desipramine, fluoxetine, amitriptyline, olanzapine.
- Anti-inflammatory agents: ibuprofen, indomethacin, phenylbutazone, oxyphenbutazone, acetazolamide, piroxicam, diclofenac.
- Diuretics: hydrochlorothiazide, spironolactone, chlortalidone.
- ACE inhibitors: captopril, enalapril.
- Other drugs: digoxin, ranitidine, lenalidomide, methyldopa, interleukin 2, dobutamine, acetazolamide.
- Contaminants: Unidentified contaminants inrapeseed oil cause the toxic oil syndrome and in commercial batches of the amino acid, L-tryptophan, cause the eosinophilia–myalgia syndrome.
- Vaccinations: Tetanus toxoid, smallpox, and diphtheria/pertussis/tetanus vaccinations.
Granulocytopenia is an abnormally low concentration of granulocytes in the blood. This condition reduces the body's resistance to many infections. Closely related terms include agranulocytosis (etymologically, "no granulocytes at all"; clinically, granulocyte levels less than 5% of normal) and neutropenia (deficiency of neutrophil granulocytes). Granulocytes live only one to two days in circulation (four days in spleen or other tissue), so transfusion of granulocytes as a therapeutic strategy would confer a very short-lasting benefit. In addition, there are many complications associated with such a procedure.
There is usually a granulocyte chemotactic defect in individuals suffering from insulin-dependent diabetes mellitus.
Leukocytosis is very common in acutely ill patients. It occurs in response to a wide variety of conditions, including viral, bacterial, fungal, or parasitic infection, cancer, hemorrhage, and exposure to certain medications or chemicals including steroids.
For lung diseases such as pneumonia and tuberculosis, WBC count is very important for the diagnosis of the disease, as leukocytosis is usually present.
The mechanism that causes leukocytosis can be of several forms: an increased release of leukocytes from bone marrow storage pools, decreased margination of leukocytes onto vessel walls, decreased extravasation of leukocytes from the vessels into tissues, or an increase in number of precursor cells in the marrow.
Certain medications, including corticosteroids, lithium and beta agonists, may cause leukocytosis.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
Leukocytosis is white cells (the leukocyte count) above the normal range in the blood. It is frequently a sign of an inflammatory response, most commonly the result of infection, but may also occur following certain parasitic infections or bone tumors as well as leukemia. It may also occur after strenuous exercise, convulsions such as epilepsy, emotional stress, pregnancy and labor, anesthesia, and epinephrine administration.
There are five principle types of leukocytosis:
1. Neutrophilia (the most common form)
2. Lymphocytosis
3. Monocytosis
4. Eosinophilia
5. Basophilia
This increase in leukocyte (primarily neutrophils) is usually accompanied by a "left upper shift" in the ratio of immature to mature neutrophils and macrophages. The proportion of immature leukocytes decreases due to proliferation and inhibition of granulocyte and monocyte precursors in the bone marrow which is stimulated by several products of inflammation including C3a and G-CSF.
Although it may indicate illness, leukocytosis is considered a laboratory finding instead of a separate disease. This classification is similar to that of fever, which is also a test result instead of a disease.
"Right shift" in the ratio of immature to mature neutrophils is considered with reduced count or lack of "young neutrophils" (metamyelocytes, and band neutrophils) in blood smear, associated with the presence of "giant neutrophils". This fact shows suppression of bone marrow activity, as a hematological sign specific for pernicious anemia and radiation sickness.
A leukocyte count above 25 to 30 x 10/L is termed a "leukemoid reaction", which is the reaction of a healthy bone marrow to extreme stress, trauma, or infection. It is different from leukemia and from leukoerythroblastosis, in which either immature white blood cells (acute leukemia) or mature, yet non-functional, white blood cells (chronic leukemia) are present in peripheral blood.
Eosinopenia is a form of agranulocytosis where the number of eosinophil granulocytes is lower than expected. Leukocytosis with eosinopenia can be a predictor of bacterial infection. It can be induced by stress reactions, Cushing's syndrome, or the use of steroids. Pathological causes include burns and acute infections.
The DRESS syndrome is a severe immunological drug reaction. It differs from other drug reactions in that it: a) is caused by a particular set of drugs; b) typically occurs after a delay of 2 to 8 weeks following intake of an offending drug; c) presents with a specific set of signs and symptoms (i.e. modest or extreme elevations in blood eosinophil and atypical lymphocyte counts; acute onset of a skin rash; lymphadenopathy; fever; neuralgia; and involvement of at least one internal organ such as the liver, lung, or heart; d) develops in individuals with particular genetic predispositions; and e) involves reactivation of latent viruses, most commonly human herpesvirus 6 or more rarely human herpes virus 5 (i.e. human cytomegalovirus), human herpesvirus 7, and human herpesvirus 4 (i.e. Epstein–Barr virus). These virus usually become dormant after infecting humans but under special circumstances, such as drug intake, are reactivated and may contribute to serious diseases such as the DRESS syndrome.
As noted above, a leukemoid reaction is typically a response to an underlying medical issue. Causes of leukemoid reactions include:
- Severe hemorrhage (retroperitoneal hemorrhage)
- Drugs
- Use of sulfa drugs
- Use of dapsone
- Use of glucocorticoids
- Use of G-CSF or related growth factors
- All-trans retinoic acid (ATRA)
- Ethylene glycol intoxication
- Infections
- Clostridium difficile
- Tuberculosis
- Pertussis
- Infectious mononucleosis (lymphocyte predominant)
- Visceral larva migrans (eosinophil predominant)
- Asplenia
- Diabetic ketoacidosis
- Organ necrosis
- Hepatic necrosis
- Ischemic colitis
- As a feature of trisomy 21 in infancy (incidence of ~10%)
- As a paraneoplastic phenomenon (rare)
An increase in eosinophils, i.e., the presence of more than 500 eosinophils/microlitre of blood is called an eosinophilia, and is typically seen in people with a parasitic infestation of the intestines; autoimmune and collagen vascular disease (such as rheumatoid arthritis) and Systemic lupus erythematosus; malignant diseases such as eosinophilic leukemia, clonal hypereosinophilia, and Hodgkin's disease; lymphocyte-variant hypereosinophilia; extensive skin diseases (such as exfoliative dermatitis); Addison's disease and other causes of low corticosteroid production (corticosteroids suppress blood eosinophil levels); reflux esophagitis (in which eosinophils will be found in the squamous epithelium of the esophagus) and eosinophilic esophagitis; and with the use of certain drugs such as penicillin. But, perhaps the most common cause for eosinophilia is an allergic condition such as asthma. In 1989, contaminated L-tryptophan supplements caused a deadly form of eosinophilia known as eosinophilia-myalgia syndrome, which was reminiscent of the Toxic Oil Syndrome in Spain in 1981.
Eosinophils play an important role in asthma as the number of accumulated eosinophils corresponds to the severity of asthmatic reaction. Eosinophilia in mice models are shown to be associated with high interleukin-5 levels. Furthermore, mucosal bronchial biopsies conducted on patients with diseases such as asthma have been found to have higher levels of interleukin-5 leading to higher levels of eosinophils. The infiltration of eosinophils at these high concentrations causes an inflammatory reaction. This ultimately leads to airway remodelling and difficulty of breathing.
Eosinophils can also cause tissue damage in the lungs of asthmatic patients. High concentrations of eosinophil major basic protein and eosinophil-derived neurotoxin that approach cytotoxic levels are observed at degranulation sites in the lungs as well as in the asthmatic sputum.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
Granulocytes are a category of white blood cells characterized by the presence of granules in their cytoplasm. They are also called polymorphonuclear leukocytes (PMN, PML, or PMNL) because of the varying shapes of the nucleus, which is usually lobed into three segments. This distinguishes them from the mononuclear agranulocytes. In common parlance, the term "polymorphonuclear leukocyte" often refers specifically to "neutrophil granulocytes", the most abundant of the granulocytes; the other types (eosinophils, basophils, and mast cells) have lower numbers. Granulocytes are produced via granulopoiesis in the bone marrow.
The term leukemoid reaction describes an increased
white blood cell count, or leukocytosis, which is a physiological response to stress or infection (as opposed to a primary blood malignancy, such as leukemia). It often describes the presence of immature cells such as myeloblasts or red blood cells with nuclei in the peripheral blood.
It may be lymphoid or myeloid.
Pure red cell aplasia (PRCA) or erythroblastopenia refers to a type of anemia affecting the precursors to red blood cells but not to white blood cells. In PRCA, the bone marrow ceases to produce red blood cells. The condition has been first described by Paul Kaznelson in 1922.
Löffler's syndrome or Loeffler's syndrome is a disease in which eosinophils accumulate in the lung in response to a parasitic infection.
It was first described in 1932 by Wilhelm Löffler in cases of eosinophilic pneumonia caused by the parasites "Ascaris lumbricoides", "Strongyloides stercoralis" and the hookworms "Ancylostoma duodenale" and "Necator americanus".
Although Löffler only described eosinophilic pneumonia in the context of infection, many authors give the term "Löffler's syndrome" to any form of acute onset pulmonary eosinophilia no matter what the underlying cause. If the cause is unknown, it is specified and called "simple pulmonary eosinophilia". Cardiac damage caused by the damaging effects of eosinophil granule proteins (ex. major basic protein) is known as Loeffler endocarditis and can be caused by idiopathic eosinophilia or eosinophilia in response to parasitic infection.
PRCA is considered an autoimmune disease as it will respond to immunosuppressant treatment such as ciclosporin in many patients, though this approach is not without risk.
It has also been shown to respond to treatments with Rituximab and Tacrolimus.
The hypereosinophilic syndrome (HES) is a disease characterized by a persistently elevated eosinophil count (≥ 1500 eosinophils/mm³) in the blood for at least six months without any recognizable cause, with involvement of either the heart, nervous system, or bone marrow.
HES is a diagnosis of exclusion, after clonal eosinophilia (such as "FIP1L1-PDGFRA"-fusion induced hypereosinophelia and leukemia) and reactive eosinophilia (in response to infection, autoimmune disease, atopy, hypoadrenalism, tropical eosinophilia, or cancer) have been ruled out.
There are some associations with chronic eosinophilic leukemia as it shows similar characteristics and genetic defects.
If left untreated, HES is progressive and fatal. It is treated with glucocorticoids such as prednisone. The addition of the monoclonal antibody mepolizumab may reduce the dose of glucocorticoids.
Clonal hypereosinophilia, also termed Primary hypereosinophelia or clonal eosinophilia, is a grouping of hematological disorder characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell, in the bone marrow, blood, and/or other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.
The clone of eosinophils bear a mutation in any one of several genes that code for proteins that regulate cell growth. The mutations cause these proteins to be continuously active and thereby to stimulate growth in an uncontrolled and continuous manner. The expanding population of eosinophils, initially formed in the bone marrow may spread to the blood and then enter into and injure various tissues and organs.
Clinically, clonal eosinophilia resembles various types of chronic or acute leukemias, lymphomas, or myeloproliferative hematological malignancies. However, many of the clonal hypereosinophilias are distinguished from these other hematological malignancies by the genetic mutations which underlie their development and, more importantly, by their susceptibility to specific treatment regiments. That is, many types of these disorders are remarkably susceptible to relatively non-toxic drugs.