Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lymphocytic choriomeningitis is not a commonly reported infection in humans, though most infections are mild and are often never diagnosed. Serological surveys suggest that approximately 1–5% of the population in the U.S. and Europe has antibodies to LCMV. The prevalence varies with the living conditions and exposure to mice, and it has been higher in the past due to lower standards of living. The island of Vir in Croatia is one of the biggest described endemic places of origin of LCMV in the world, with IFA testing having found LCMV antibodies in 36% of the population. Individuals with the highest risk of infection are laboratory personnel who handle rodents or infected cells. Temperature and time of year is also a critical factor that contributes to the number of LCMV infections, particularly during fall and winter when mice tend to move indoors. Approximately 10–20% of the cases in immunocompetent individuals are thought to progress to neurological disease, mainly as aseptic meningitis. The overall case fatality rate is less than 1% and people with complications, including meningitis, almost always recover completely. Rare cases of meningoencephalitis have also been reported. More severe disease is likely to occur in people who are immunosuppressed.
More than 50 infants with congenital LCMV infection have been reported worldwide. The probability that a woman will become infected after being exposed to rodents, the frequency with which LCMV crosses the placenta, and the likelihood of clinical signs among these infants are still poorly understood. In one study, antibodies to LCMV were detected in 0.8% of normal infants, 2.7% of infants with neurological signs and 30% of infants with hydrocephalus. In Argentina, no congenital LCMV infections were reported among 288 healthy mothers and their infants. However, one study found that two of 95 children in a home for people with severe mental disabilities had been infected with this virus. The prognosis for severely affected infants appears to be poor. In one series, 35% of infants diagnosed with congenital infections had died by the age of 21 months.
Transplant-acquired lymphocytic choriomeningitis proves to have a very high morbidity and mortality rate. In the three clusters reported in the U.S. from 2005 to 2010, nine of the ten infected recipients died. One donor had been infected from a recently acquired pet hamster while the sources of the virus in the other cases were unknown.
Numerous factors have been suggested and linked to a higher risk of acquiring the infection, inclusive of malnutrition, vitamin A deficiency, absence of breastfeeding during the early stages of life, environmental pollution and overcrowding.
Viral entry is the earliest stage of infection in the viral life cycle, as the virus comes into contact with the host cell and introduces viral material into the cell. The major steps involved in viral entry are shown below. Despite the variation among viruses, there are several shared generalities concerning viral entry.
Mortality caused by HPIVs in developed regions of the world remains rare. Where mortality has occurred, it is principally in the three core risk groups (very young, elderly and immuno-compromised). Long term changes can however be associated with airway remodelling and are believed to be a significant cause of morbidity. The exact associations between HPIVs and diseases such as chronic obstructive pulmonary disease (COPD) are still being investigated.
In developing regions of the world, the highest risk group in terms of mortality remains pre-school children. Mortality may be as a consequence of primary viral infection or secondary problems such as bacterial infection. Predispositions, such as malnutrition and other deficiencies may further elevate the chances of mortality associated with infection.
Overall, LRI's cause approximately 25–30% of total deaths in pre-school children in the developing world. HPIVs is believed to be associated with 10% of all LRI cases, thus remaining a significant cause of mortality.
Patients infected in solid organ transplants have developed a severe fatal illness, starting within weeks of the transplant. In all reported cases, the initial symptoms included fever, lethargy, anorexia and leukopenia, and quickly progressed to multisystem organ failure, hepatic insufficiency or severe hepatitis, dysfunction of the transplanted organ, coagulopathy, hypoxia, multiple bacteremias and shock. Localized rash and diarrhea were also seen in some patients. Nearly all cases have been fatal.
In May 2005, four solid-organ transplant recipients contracted an illness that was later diagnosed as lymphocytic choriomeningitis. All received organs from a common donor, and within a month of transplantation, three of the four recipients had died as a result of the viral infection. Epidemiologic investigation traced the source to a pet hamster that the organ donor had recently purchased from a Rhode Island pet store. Similar cases occurred in Massachusetts in 2008, and Australia in 2013. Currently, there is not a LCMV infection test that is approved by the Food and Drug Administration for organ donor screening. The "Morbidity and Mortality Weekly Report" advises health-care providers to "consider LCMV infection in patients with aseptic meningitis and encephalitis and in organ transplant recipients with unexplained fever, hepatitis, or multisystem organ failure."
There are several diseases that are caused by avian reovirus, which includes, avian arthritis/tenosynovitis, runting-stunting syndrome, and blue wing disease in chickens. Blue wing disease affects young broiler chickens and has an average mortality rate of 10%. It causes intramuscular and subcutaneous hemorrhages and atrophy of the spleen, bursa of Fabricius, and thymus. When young chickens are experimentally infected with avian reovirus, it is spread rapidly throughout all tissues. This virus is spread most frequently in the skin and muscles, which is also the most obvious site for lesions. Avian arthritis causes significant lameness in joints, specifically the hock joints. In the most severe cases, viral arthritis has caused the tendon to rupture. Chickens that have contracted runting-stunting syndrome cause a number of individuals in a flock to appear noticeably small due to its delayed growth. Diseased chicks are typically pale, dirty, wet, and may have a distending abdomen. Some individuals may display “helicopter-like” feathers in their wings and other feather abnormalities. The virus has also been shown to cause osteoporosis.
The mortality rate of chikungunya is slightly less than 1 in 1000. Those over the age of 65, neonates, and those with underlying chronic medical problems are most likely to have severe complications. Neonates are vulnerable as it is possible to vertically transmit chikungunya from mother to infant during delivery, which results in high rates of morbidity, as infants lack fully developed immune systems. The likelihood of prolonged symptoms or chronic joint pain is increased with increased age and prior rheumatological disease.
Avian reoviruses belong to the genus "Orthoreovirus", and "Reoviridae" family. They are non-enveloped viruses that undergo replication in the cytoplasm of infected cells. It has icosahedral symmetry and contains a double-shelled arrangement of surface protein. Virus particles can range between 70–80 nm. Morphologically, the virus is a double stranded RNA virus that is composed of ten segments. The genome and proteins that are encoded by the genome can be separated into three different sizes ranging from small, medium, or large. Of the eleven proteins that are encoded for by the genome, two are nonstructural, while the remaining nine are structural.
Avian reoviruses can withstand a pH range of 3.0–9.0. Ambient temperatures are suitable for the survival of these viruses, which become inactive at 56 °C in less than an hour. Common areas where this virus can survive include galvanized metal, glass, rubber, feathers, and wood shavings. Avian reovirus can survive for up to ten days on these common areas in addition to up to ten weeks in water.
Cultivation and observation of the effects of avian reovirus is most often performed in chicken embryos. If infected into the yolk sac, the embryo will succumb to death accompanied by hemorrhaging of the embryos and cause the foci on the liver to appear yellowish-green. There are several primary chicken cell cultures/areas that are susceptible to avian reoviruses, which include the lungs, liver, kidney, and fibroblasts of the chick embryo. Of the following susceptible areas, liver cells from the chick embryo have been found to be the most sensitive for primary isolation from clinical material.
Typically, the CPE effect of avian reoviruses is the production of syncytia. CPE, or cytopathic effects are the visible changes in a host cell that takes place because of viral infection. Syncytia is a single cell or cytoplasmic mass containing several nuclei, formed by fusion of cells or by division of nuclei.
Fetal infection is of most consequence as this can result in the birth of a persistently infected neonate. The effects of fetal infection with BVDV are dependent upon the stage of gestation at which the dam suffers acute infection.
BVDV infection of the dam prior to conception, and during the first 18 days of gestation, results in delayed conception and an increased calving to conception interval. Once the embryo is attached, infection from days 29–41 can result in embryonic infection and resultant embryonic death.
Infection of the dam from approximately day 30 of gestation until day 120 can result in immunotolerance and the birth of calves persistently infected with the virus.
BVDV infection between 80 and 150 days of gestation may be teratogenic, with the type of birth defect dependent upon the stage of fetal development at infection. Abortion may occur at any time during gestation. Infection after approximately day 120 can result in the birth of a normal fetus which is BVD antigen-negative and BVD antibody-positive. This occurs because the fetal immune system has developed, by this stage of gestation, and has the ability to recognise and fight off the invading virus, producing anti-BVD antibodies.
In virology, defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle (the 'helper' virus) to co-infect a cell with it, in order to provide the lost factors. The existence of DIPs has been known about for decades, and they can occur within nearly every class of both DNA and RNA viruses.
The virus’s transmission cycle in the wild is similar to the continuous sylvatic cycle of yellow fever and is believed to involve wild primates (monkeys) as the reservoir and the tree-canopy-dwelling "Haemagogus" species mosquito as the vector. Human infections are strongly associated with exposure to humid tropical forest environments. Chikungunya virus is closely related, producing a nearly indistinguishable, highly debilitating arthralgic disease. On February 19, 2011, a Portuguese-language news source reported on a recent survey which revealed Mayaro virus activity in Manaus, Amazonas State, Brazil. The survey studied blood samples from 600 residents of Manaus who had experienced a high fever; Mayaro virus was identified in 33 cases. Four of the cases experienced mild hemorrhagic (bleeding) symptoms, which had not previously been described in Mayaro virus disease. The report stated that this outbreak is the first detected in a metropolitan setting, and expressed concern that the disease might be adapting to urban species of mosquito vectors, which would make it a risk for spreading within the country. A study published in 1991 demonstrated that a colonized strain of Brazilian "Aedes albopictus" was capable of acquiring MAYV from infected hamsters and subsequently transmitting it and a study published in October 2011 demonstrated that "Aedes aegypti" can transmit MAYV, supporting the possibility of wider transmission of Mayaro virus disease in urban settings.
BVDV infection has a wide manifestation of clinical signs including fertility issues, milk drop, pyrexia, diarrhoea and fetal infection. Occasionally, a severe acute form of BVD may occur. These outbreaks are characterized by thrombocytopenia with high morbidity and mortality. However, clinical signs are frequently mild and infection insidious, recognised only by BVDV’s immunosuppressive effects perpetuating other circulating infectious diseases (particularly scours and pneumonias).
, no approved vaccines are available. A phase-II vaccine trial used a live, attenuated virus, to develop viral resistance in 98% of those tested after 28 days and 85% still showed resistance after one year. However, 8% of people reported transient joint pain, and attenuation was found to be due to only two mutations in the E2 glycoprotein. Alternative vaccine strategies have been developed, and show efficacy in mouse models. In August 2014 researchers at the National Institute of Allergy and Infectious Diseases in the USA were testing an experimental vaccine which uses virus-like particles (VLPs) instead of attenuated virus. All the 25 people participated in this phase 1 trial developed strong immune responses. As of 2015, a phase 2 trial was planned, using 400 adults aged 18 to 60 and to take place at 6 locations in the Caribbean. Even with a vaccine, mosquito population control and bite prevention will be necessary to control chikungunya disease.
The virus is most often spread by person to person contact with the stool or saliva of the infected person. Two types of vaccines have been developed to prevent the occurrence and spread of the poliomyelitis virus. The first is an inactivated, or killed, form of the virus and the second is an attenuated, or weakened, form of the virus. The development of vaccines has successfully eliminated the disease from the United States. There are continued vaccination efforts in the U.S. to maintain this success rate as this disease still occurs in some areas of the world.
DIPs are a naturally occurring phenomenon that can also be synthesized for experimental use. They are spontaneously produced by error-prone viral replication, something particularly prevalent in RNA viruses over DNA viruses due to the enzyme used (replicase, or RNA-dependent RNA polymerase.) DI genomes typically retain the termini sequences needed for recognition by viral polymerases, and sequences for packaging of their genome into new particles, but little else. The size of the genomic deletion event can vary greatly, with one such example in a DIP derived from rabies virus exhibiting a 6.1 kb deletion. In another example, the size of several DI-DNA plant virus genomes varied from one tenth of the size of the original genome to one half.
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
EVD has a high risk of death in those infected which varies between 25 percent and 90 percent of those infected. , the average risk of death among those infected is 50 percent. The highest risk of death was 90 percent in the 2002–2003 Republic of the Congo outbreak.
Death, if it occurs, follows typically six to sixteen days after symptoms appear and is often due to low blood pressure from fluid loss. Early supportive care to prevent dehydration may reduce the risk of death.
If an infected person survives, recovery may be quick and complete. Prolonged cases are often complicated by the occurrence of long-term problems, such as inflammation of the testicles, joint pains, muscular pain, skin peeling, or hair loss. Eye symptoms, such as light sensitivity, excess tearing, and vision loss have been described.
Ebola can stay in some body parts like the eyes, breasts, and testicles after infection. Sexual transmission after recovery has been suspected. If sexual transmission occurs following recovery it is believed to be a rare event. One case of a condition similar to meningitis has been reported many months after recovery as of Oct. 2015.
A study of 44 survivors of the Ebola virus in Sierra Leone reported musculoskeletal pain in 70%, headache in 48% and eye problems in 14%.
Infection with Japanese encephalitis confers lifelong immunity. There are currently three vaccines available: SA14-14-2, IC51 (marketed in Australia and New Zealand as JESPECT and elsewhere as IXIARO) and ChimeriVax-JE (marketed as IMOJEV). All current vaccines are based on the genotype III virus.
A formalin-inactivated mouse-brain derived vaccine was first produced in Japan in the 1930s and was validated for use in Taiwan in the 1960s and in Thailand in the 1980s. The widespread use of vaccine and urbanization has led to control of the disease in Japan, Korea, Taiwan, and Singapore. The high cost of this vaccine, which is grown in live mice, means that poorer countries have not been able to afford to give it as part of a routine immunization program.
The most common adverse effects are redness and pain at the injection site. Uncommonly, an urticarial reaction can develop about four days after injection. Vaccines produced from mouse brain have a risk of autoimmune neurological complications of around 1 per million vaccinations. However where the vaccine is not produced in mouse brains but in vitro using cell culture there is little adverse effects compared to placebo, the main side effects are headache and myalgia.
The neutralizing antibody persists in the circulation for at least two to three years, and perhaps longer. The total duration of protection is unknown, but because there is no firm evidence for protection beyond three years, boosters are recommended every three years for people who remain at risk. Furthermore, there is also no data available regarding the interchangeability of other JE vaccines and IXIARO.
In September 2012 the Indian firm Biological E. Limited has launched an inactivated cell culture derived vaccine based on SA 14-14-2 strain which was developed in a technology transfer agreement with Intercell and is a thiomersal-free vaccine.
Paravaccinia is a member of the Parapoxvirus family. It has a cylindrical body about 140 X 310 nm in size, with convex ends covered in a criss-cross pattern of rope like structures. The virus is resistant to cold, dehydration, and temperatures up to 56 °C. Upon injecting a cell with its genome, the virus begins transcription in the cytoplasm using viral RNA polymerase. As the virus progresses through the cell, the host begins to replicate the viral genome between 140 minutes and 48 hours.
Mayaro virus disease is a mosquitoborne zoonotic pathogen endemic to certain humid forests of tropical South America. Infection with Mayaro virus causes an acute, self-limited dengue-like illness of 3–5 days' duration. The causative virus, abbreviated MAYV, is in the family Togaviridae, and genus Alphavirus. It is closely related to other alphaviruses that produce a dengue-like illness accompanied by long-lasting arthralgia. It is only known to circulate in tropical South America.
Estimated percent of new cancers attributable to the virus worldwide in 2002. NA indicates not available.
The association of other viruses with human cancer is continually under research.
Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease caused by a group of ruminant gamma herpes viruses including Alcelaphine gammaherpesvirus 1 (AlHV-1) and Ovine gammaherpesvirus 2 (OvHV-2) These viruses cause unapparent infection in their reservoir hosts (sheep with OvHV-2 and wildebeest with AlHV-1), but are usually fatal in cattle and other ungulates such as deer, antelope, and buffalo.
BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia, bison in the US and in pastoralist herds in Eastern and Southern Africa.
Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Pére Davids deer, Bali cattle and bison, with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days. In contrast, post infection cattle will usually survive a week or more.
Marburg virus is a hemorrhagic fever virus of the "Filoviridae" family of viruses and a member of the species "Marburg marburgvirus", genus "Marburgvirus". Marburg virus (MARV) causes Marburg virus disease in humans and nonhuman primates, a form of viral hemorrhagic fever. Considered to be extremely dangerous, the WHO rates it as a Risk Group 4 Pathogen (requiring biosafety level 4-equivalent containment). In the United States, the NIH/National Institute of Allergy and Infectious Diseases ranks it as a Category A Priority Pathogen and the Centers for Disease Control and Prevention lists it as a Category A Bioterrorism Agent. It is also listed as a biological agent for export control by the Australia Group.
The virus can be transmitted by exposure to one species of fruit bats or it can be transmitted between people via body fluids through unprotected copulation and broken skin. The disease can cause bleeding (haemorrhage), fever and other symptoms much like Ebola. Funeral rituals are a particular risk. Actual treatment of the virus after infection is not possible but early, professional treatment of symptoms like dehydration considerably increase survival chances.
In 2009, expanded clinical trials of an Ebola and Marburg vaccine began in Kampala, Uganda.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
Research into the mechanism of this disease stalled with the development of the vaccines in the mid-twentieth century. However, with the recent identification of the cell surface receptor CD155 new interest has resurfaced in this disease. Experiments on transgenic mice are investigating the initial sites of viral replication in the host and how the virus moves from the bloodstream into the central nervous system. Research into the host range of the virus has also been of interest. The host range of a virus is determined by the interaction of the virus with host cellular receptors such as CD155. Comparison of the amino acid sequence in the binding domain of the host cell receptor is highly variable among mammalian species. Rapid changes in the sequence of the binding domain have restricted the host range of the poliovirus. Targeting of the brain and spinal cord have also come under investigation. The restricted tropism maybe due to organ specific differences in the initiation of translation by the virus internal ribosome entry site.