Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Rotavirus is highly contagious and cannot be treated with antibiotics or other drugs. Because improved sanitation does not decrease the prevalence of rotaviral disease, and the rate of hospitalisations remains high despite the use of oral rehydrating medicines, the primary public health intervention is vaccination. In 1998, a rotavirus vaccine was licensed for use in the United States. Clinical trials in the United States, Finland, and Venezuela had found it to be 80 to 100% effective at preventing severe diarrhoea caused by rotavirus A, and researchers had detected no statistically significant serious adverse effects. The manufacturer, however, withdrew it from the market in 1999, after it was discovered that the vaccine may have contributed to an increased risk for intussusception, a type of bowel obstruction, in one of every 12,000 vaccinated infants. The experience provoked intense debate about the relative risks and benefits of a rotavirus vaccine.
In 2006, two new vaccines against infection were shown to be safe and effective in children, and in 2009, the WHO recommended that rotavirus vaccine be included in all national immunisation programmes.
The incidence and severity of rotavirus infections has declined significantly in countries that have acted on this recommendation. A 2014 review of available clinical trial data from countries routinely using rotavirus vaccines in their national immunisation programs found that rotavirus vaccines have reduced rotavirus hospitalisations by 49–92 percent and all cause diarrhoea hospitalisations by 17–55 percent. In Mexico, which in 2006 was among the first countries in the world to introduce rotavirus vaccine, diarrhoeal disease death rates dropped during the 2009 rotavirus season by more than 65 percent among children age two and under. In Nicaragua, which in 2006 became the first developing country to introduce a rotavirus vaccine, severe rotavirus infections were reduced by 40 percent and emergency room visits by a half. In the United States, rotavirus vaccination since 2006 has led to drops in rotavirus-related hospitalisations by as much as 86 percent. The vaccines may also have prevented illness in non-vaccinated children by limiting the number of circulating infections. In developing countries in Africa and Asia, where the majority of rotavirus deaths occur, a large number of safety and efficacy trials as well as recent post-introduction impact and effectiveness studies of Rotarix and RotaTeq have found that vaccines dramatically reduced severe disease among infants. In September 2013, the vaccine was offered to all children in the UK, aged between two and three months, and it is expected to halve the cases of severe infection and reduce the number of children admitted to hospital because of the infection by 70 percent. In Europe, hospitalisation rates following infection by rotavirus have decreased by 65% to 84% following the introduction of the vaccine. Globally, vaccination has reduced hospital admissions and emergency department visits by a median of 67%.
Rotavirus vaccines are licensed in over 100 countries, and more than 80 countries have introduced routine rotavirus vaccination, almost half with the support of Gavi, the Vaccine Alliance. To make rotavirus vaccines available, accessible, and affordable in all countries—particularly low- and middle-income countries in Africa and Asia where the majority of rotavirus deaths occur, PATH (formerly Program for Appropriate Technology in Health), the WHO, the U.S. Centers for Disease Control and Prevention, and Gavi have partnered with research institutions and governments to generate and disseminate evidence, lower prices, and accelerate introduction.
Rotavirus A, which accounts for more than 90% of rotavirus gastroenteritis in humans, is endemic worldwide. Each year rotavirus causes millions of cases of diarrhoea in developing countries, almost 2 million resulting in hospitalisation and an estimated 453,000 resulting in the death of a child younger than five. This is about 40 per cent of all hospital admissions related to diarrhea in children under five worldwide.
In the United States alone—before initiation of the rotavirus vaccination programme—over 2.7 million cases of rotavirus gastroenteritis occurred annually, 60,000 children were hospitalised and around 37 died from the results of the infection. The major role of rotavirus in causing diarrhoea is not widely recognised within the public health community, particularly in developing countries. Almost every child has been infected with rotavirus by age five. It is the leading single cause of severe diarrhoea among infants and children, being responsible for about 20% of cases, and accounts for 50% of the cases requiring hospitalisation. Rotavirus causes 37% of deaths attributable to diarrhoea and 5% of all deaths in children younger than five. Boys are twice as likely as girls to be admitted to hospital.
Rotavirus infections occur primarily during cool, dry seasons. The number attributable to food contamination is unknown.
Outbreaks of rotavirus A diarrhoea are common among hospitalised infants, young children attending day care centres, and elderly people in nursing homes. An outbreak caused by contaminated municipal water occurred in Colorado in 1981.
During 2005, the largest recorded epidemic of diarrhoea occurred in Nicaragua. This unusually large and severe outbreak was associated with mutations in the rotavirus A genome, possibly helping the virus escape the prevalent immunity in the population. A similar large outbreak occurred in Brazil in 1977.
Rotavirus B, also called adult diarrhoea rotavirus or ADRV, has caused major epidemics of severe diarrhoea affecting thousands of people of all ages in China. These epidemics occurred as a result of sewage contamination of drinking water. Rotavirus B infections also occurred in India in 1998; the causative strain was named CAL. Unlike ADRV, the CAL strain is endemic. To date, epidemics caused by rotavirus B have been confined to mainland China, and surveys indicate a lack of immunity to this species in the United States.
Rotavirus A, which accounts for more than 90% of rotavirus gastroenteritis in humans, is endemic worldwide. Each year rotavirus causes millions of cases of diarrhoea in developing countries, almost 2 million of which result in hospitalisation. In 2013, an estimated 215,000 children younger than five died from rotavirus, 90 percent of whom were in developing countries. Almost every child has been infected with rotavirus by age five. Rotavirus is the leading single cause of severe diarrhoea among infants and children, is responsible for about a third of the cases requiring hospitalisation, and causes 37% of deaths attributable to diarrhoea and 5% of all deaths in children younger than five. Boys are twice as likely as girls to be admitted to hospital for rotavirus.
In the pre-vaccination era, rotavirus infections occurred primarily during cool, dry seasons. The number attributable to food contamination is unknown.
Outbreaks of rotavirus A diarrhoea are common among hospitalised infants, young children attending day care centres, and elderly people in nursing homes. An outbreak caused by contaminated municipal water occurred in Colorado in 1981.
During 2005, the largest recorded epidemic of diarrhoea occurred in Nicaragua. This unusually large and severe outbreak was associated with mutations in the rotavirus A genome, possibly helping the virus escape the prevalent immunity in the population. A similar large outbreak occurred in Brazil in 1977.
Rotavirus B, also called adult diarrhoea rotavirus or ADRV, has caused major epidemics of severe diarrhoea affecting thousands of people of all ages in China. These epidemics occurred as a result of sewage contamination of drinking water. Rotavirus B infections also occurred in India in 1998; the causative strain was named CAL. Unlike ADRV, the CAL strain is endemic. To date, epidemics caused by rotavirus B have been confined to mainland China, and surveys indicate a lack of immunity to this species in the United States.
Rotavirus C has been associated with rare and sporadic cases of diarrhoea in children, and small outbreaks have occurred in families.
Because improved sanitation does not decrease the prevalence of rotaviral disease, and the rate of hospitalisations remains high, despite the use of oral rehydrating medicines, the primary public health intervention is vaccination. Two rotavirus vaccines against Rotavirus A infection are safe and effective in children: Rotarix by GlaxoSmithKline and RotaTeq by Merck. Both are taken orally and contain attenuated live virus.
Rotavirus vaccines are licensed in more than 100 countries, but only 17 countries have introduced routine rotavirus vaccination. Following the introduction of routine rotavirus vaccination in the US in 2006, the health burden of rotavirus gastroenteritis "rapidly and dramatically reduced" despite lower coverage levels compared to other routine infant immunizations. Clinical trials of the Rotarix rotavirus vaccine in South Africa and Malawi, found that the vaccine significantly reduced severe diarrhoea episodes caused by rotavirus, and that the infection was preventable by vaccination. A 2012 Cochrane review of 41 clinical trials that included 186,263 participants concluded Rotarix and RotaTeq are effective vaccines. Additional rotavirus vaccines are under development. The World Health Organization(WHO) recommends that rotavirus vaccine be included in all national immunisation programmes. The incidence and severity of rotavirus infections has declined significantly in countries that have acted on this recommendation.
The Rotavirus Vaccine Program is a collaboration between PATH, the (WHO), and the U.S. Centers for Disease Control and Prevention, and is funded by the GAVI Alliance. The Program aims to reduce child morbidity and mortality from diarrhoeal disease by making a vaccine against rotavirus available for use in developing countries.
Rotavirus, norovirus, adenovirus, and astrovirus are known to cause viral gastroenteritis. Rotavirus is the most common cause of gastroenteritis in children, and produces similar rates in both the developed and developing world. Viruses cause about 70% of episodes of infectious diarrhea in the pediatric age group. Rotavirus is a less common cause in adults due to acquired immunity. Norovirus is the cause in about 18% of all cases.
Norovirus is the leading cause of gastroenteritis among adults in America, causing greater than 90% of outbreaks. These localized epidemics typically occur when groups of people spend time in close physical proximity to each other, such as on cruise ships, in hospitals, or in restaurants. People may remain infectious even after their diarrhea has ended. Norovirus is the cause of about 10% of cases in children.
In the developed world "Campylobacter jejuni" is the primary cause of bacterial gastroenteritis, with half of these cases associated with exposure to poultry. In children, bacteria are the cause in about 15% of cases, with the most common types being "Escherichia coli", "Salmonella", "Shigella", and "Campylobacter" species. If food becomes contaminated with bacteria and remains at room temperature for a period of several hours, the bacteria multiply and increase the risk of infection in those who consume the food. Some foods commonly associated with illness include raw or undercooked meat, poultry, seafood, and eggs; raw sprouts; unpasteurized milk and soft cheeses; and fruit and vegetable juices. In the developing world, especially sub-Saharan Africa and Asia, cholera is a common cause of gastroenteritis. This infection is usually transmitted by contaminated water or food.
Toxigenic "Clostridium difficile" is an important cause of diarrhea that occurs more often in the elderly. Infants can carry these bacteria without developing symptoms. It is a common cause of diarrhea in those who are hospitalized and is frequently associated with antibiotic use. "Staphylococcus aureus" infectious diarrhea may also occur in those who have used antibiotics. Acute "traveler's diarrhea" is usually a type of bacterial gastroenteritis, while the persistent form is usually parasitic. Acid-suppressing medication appears to increase the risk of significant infection after exposure to a number of organisms, including "Clostridium difficile", "Salmonella", and "Campylobacter" species. The risk is greater in those taking proton pump inhibitors than with H2 antagonists.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
The common routes of transmission for the disease-causing bacteria are fecal-oral, person-to-person sexual contact, ingestion of contaminated food (generally unpasteurized (raw) milk and undercooked or poorly handled poultry), and waterborne (i.e., through contaminated drinking water). Contact with contaminated poultry, livestock, or household pets, especially puppies, can also cause disease.
Animals farmed for meat are the main source of campylobacteriosis. A study published in PLoS Genetics (September 26, 2008) by researchers from Lancashire, England, and Chicago, Illinois, found that 97 percent of campylobacteriosis cases sampled in Lancashire were caused by bacteria typically found in chicken and livestock. In 57 percent of cases, the bacteria could be traced to chicken, and in 35 percent to cattle. Wild animal and environmental sources were accountable for just three percent of disease.
The infectious dose is 1000–10,000 bacteria (although ten to five hundred bacteria can be enough to infect humans). "Campylobacter" species are sensitive to hydrochloric acid in the stomach, and acid reduction treatment can reduce the amount of needed to cause disease.
Exposure to bacteria is often more common during travelling, and therefore campylobacteriosis is a common form of travelers' diarrhea.
One study suggests that on very long trips in the wilderness, taking multivitamins may reduce the incidence of diarrhea.
In patients with HIV, infections may be more frequent, may cause prolonged bouts of dirty brown diarrhea, and may be more commonly associated with bacteremia and antibiotic resistance. In participants of unprotected anal intercourse, campylobacteriosis is more localized to the distal end of the colon and may be termed a proctocolitis. The severity and persistence of infection in patients with AIDS and hypogammaglobulinemia indicates that both cell-mediated and humoral immunity are important in preventing and terminating infection.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
The risk of acquiring infectious diarrhea in the wilderness arises from inadvertent ingestion of pathogens. Various studies have sought to estimate diarrhea attack rates among wilderness travelers, and results have ranged widely. The variation of diarrhea rate between studies may depend on the time of year, the location of the study, the length of time the hikers were in the wilderness,
the prevention methods used, and the study methodology.
The National Outdoor Leadership School (NOLS), which emphasizes strict hand-washing techniques, water disinfection and washing of common cooking utensils in their programs, reports that gastrointestinal illnesses occurred at a rate of only 0.26 per 1000 program days. In contrast, a survey of long-distance Appalachian Trail hikers found more than half the respondents reported at least one episode of diarrhea that lasted an average of two days. (Infectious diarrhea may last longer than an average of two days; certain forms of non-infectious diarrhea, caused by diet change etc., can be of very brief duration). Analysis of this survey found occurrence of diarrhea was positively associated with the duration of exposure in the wilderness. During any given four-week period, as many as 7.2% of Americans may experience some form of infectious or non-infectious diarrhea. A number of behaviors each individually reduced the incidence of diarrhea: treating water; routinely washing hands with soap and water after defecation and urination; cleaning cooking utensils with soap and warm water; and taking multi-vitamins.
A variety of pathogens can cause infectious diarrhea, and most cases among backpackers appear to be caused by bacteria from feces. A study at Grand Teton National Park found 69% of diarrhea affected visitors had no identifiable cause, that 23% had diarrhea due to "Campylobacter" and 8% of patients with diarrhea had giardiasis. Campylobacter enteritis occurred most frequently in young adults who had hiked in wilderness areas and drunk untreated surface water in the week prior. Another study tested 35 individuals before and after a trip to the Desolation Wilderness of California. Giardia cysts were found in fecal samples from two people after the trip, but they were asymptomatic. A third person was empirically treated for symptoms of giardiasis.
Fecal-oral transmission may be the most common vector for wilderness acquired diarrhea. There are differing opinions regarding the importance of routine disinfection of water during relatively brief backcountry visits.
Insufficient data exists, but "Shigella" is estimated to have caused the death of 34,000 children under the age of five in 2013, and 40,000 deaths in people over five years of age. "Amebiasis" infects over 50 million people each year, of whom 50,000 die.
The seed, leaves, and bark of the kapok tree have been used in traditional medicine by indigenous peoples of the rainforest regions in the Americas, west-central Africa, and Southeast Asia to treat this disease. "Bacillus subtilis" was marketed throughout America and Europe from 1946 as an immunostimulatory aid in the treatment of gut and urinary tract diseases such as rotavirus and "Shigella", but declined in popularity after the introduction of consumer antibiotics.
With most infections, the key is to block the spread of the organism.
- Wash hands frequently
- Eat properly prepared and stored food.
- Bleach soiled laundry
- Vaccinations for "Vibrio cholerae" and rotavirus have been developed. Rotavirus vaccination is recommended for infants in the U.S. Vaccines for "V. cholerae" may be administered to individuals traveling to at-risk areas
Gastroenteritis can be caused by viral, bacterial, or parasitic infections. Common routes of infection include:
- Food
- Contaminated water
- Contact with an infected person
- Unwashed hands
Fifty to seventy percent of cases of gastroenteritis in adults are caused by noroviruses (genus Norovirus, family Caliciviridae). This virus is highly contagious and spreads rapidly. Norovirus is the most common cause of gastroenteritis in the United States.
Prognosis is generally poor. If a patient survives, recovery may be prompt and complete, or protracted with sequelae, such as orchitis, hepatitis, uveitis, parotitis, desquamation or alopecia. Importantly, MARV is known to be able to persist in some survivors and to either reactivate and cause a secondary bout of MVD or to be transmitted via sperm, causing secondary cases of infection and disease.
Of the 252 people who contracted Marburg during the 2004–2005 outbreak of a particularly virulent serotype in Angola, 227 died, for a case fatality rate of 90%.
Although all age groups are susceptible to infection, children are rarely infected. In the 1998–2000 Congo epidemic, only 8% of the cases were children less than 5 years old.
MVD is caused by two viruses Marburg virus (MARV) and Ravn virus (RAVV)family Filoviridae
Marburgviruses are endemic in arid woodlands of equatorial Africa. Most marburgvirus infections were repeatedly associated with people visiting natural caves or working in mines. In 2009, the successful isolation of infectious MARV and RAVV was reported from healthy Egyptian rousettes ("Rousettus aegyptiacus") caught in caves. This isolation strongly suggests that Old World fruit bats are involved in the natural maintenance of marburgviruses and that visiting bat-infested caves is a risk factor for acquiring marburgvirus infections. Further studies are necessary to establish whether Egyptian rousettes are the actual hosts of MARV and RAVV or whether they get infected via contact with another animal and therefore serve only as intermediate hosts. Another risk factor is contact with nonhuman primates, although only one outbreak of MVD (in 1967) was due to contact with infected monkeys. Finally, a major risk factor for acquiring marburgvirus infection is occupational exposure, i.e. treating patients with MVD without proper personal protective equipment.
Contrary to Ebola virus disease (EVD), which has been associated with heavy rains after long periods of dry weather, triggering factors for spillover of marburgviruses into the human population have not yet been described.
Viral infections make up perhaps one third of cases of food poisoning in developed countries. In the US, more than 50% of cases are viral and noroviruses are the most common foodborne illness, causing 57% of outbreaks in 2004. Foodborne viral infection are usually of intermediate (1–3 days) incubation period, causing illnesses which are self-limited in otherwise healthy individuals; they are similar to the bacterial forms described above.
- Enterovirus
- Hepatitis A is distinguished from other viral causes by its prolonged (2–6 week) incubation period and its ability to spread beyond the stomach and intestines into the liver. It often results in jaundice, or yellowing of the skin, but rarely leads to chronic liver dysfunction. The virus has been found to cause infection due to the consumption of fresh-cut produce which has fecal contamination.
- Hepatitis E
- Norovirus
- Rotavirus
One of the most common causes of infectious diarrhea, is a lack of clean water. Often, improper fecal disposal leads to contamination of groundwater. This can lead to widespread infection among a population, especially in the absence of water filtration or purification. Human feces contains a variety of potentially harmful human pathogens.
Open defecation is a leading cause of infectious diarrhea leading to death.
Poverty is a good indicator of the rate of infectious diarrhea in a population. This association does not stem from poverty itself, but rather from the conditions under which impoverished people live. The absence of certain resources compromises the ability of the poor to defend themselves against infectious diarrhea. "Poverty is associated with poor housing, crowding, dirt floors, lack of access to clean water or to sanitary disposal of fecal waste (sanitation), cohabitation with domestic animals that may carry human pathogens, and a lack of refrigerated storage for food, all of which increase the frequency of diarrhea... Poverty also restricts the ability to provide age-appropriate, nutritionally balanced diets or to modify diets when diarrhea develops so as to mitigate and repair nutrient losses. The impact is exacerbated by the lack of adequate, available, and affordable medical care."
Estimates ranged from 6.7% in 1990 to 7.4% (patients may have several infections). At national level, prevalence among patients in health care facilities was 6.7% in 1996, 5.9% in 2001 and 5.0% in 2006. The rates for nosocomial infections were 7.6% in 1996, 6.4% in 2001 and 5.4% in 2006.
In 2006, the most common infection sites were urinary tract infections (30,3%), pneumopathy (14,7%), infections of surgery site (14,2%). Infections of the skin and mucous membrane (10,2%), other respiratory infections (6,8%) and bacterial infections / blood poisoning (6,4%). The rates among adult patients in intensive care were 13,5% in 2004, 14,6% in 2005, 14,1% in 2006 and 14.4% in 2007.
Nosocomial infections are estimated to make patients stay in the hospital four to five additional days. Around 2004-2005, about 9,000 people died each year with a nosocomial infection, of which about 4,200 would have survived without this infection.
Globally, infants are a population that are especially vulnerable to foodborne disease. The World Health Organization has issued recommendations for the preparation, use and storage of prepared formulas. Breastfeeding remains the best preventative measure for protection of foodborne infections in infants.
The Centers for Disease Control and Prevention (CDC) estimated roughly 1.7 million hospital-associated infections, from all types of bacteria combined, cause or contribute to 99,000 deaths each year. Other estimates indicate 10%, or 2 million, patients a year become infected, with the annual cost ranging from $4.5 billion to $11 billion. In the USA, the most frequent type of infection hospitalwide is urinary tract infection (36%), followed by surgical site infection (20%), and bloodstream infection and pneumonia (both 11%).
"S. aureus" is an enterotoxin producer. Enterotoxins are chromosomally encoded exotoxins that are produced and secreted from several bacterial organisms. It is a heat stable toxin and is resistant to digestive protease. It is the ingestion of the toxin that causes the inflammation and swelling of the intestine.