Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
X-linked congenital stationary night blindness (CSNB) is a rare X-linked non-progressive retinal disorder. It has two forms, complete, also known as type-1 (CSNB1), and incomplete, also known as type-2 (CSNB2), depending on severity. In the complete form (CSNB1), there is no measurable rod cell response to light, whereas this response is measurable in the incomplete form. Patients with this disorder have difficulty adapting to low light situations due to impaired photoreceptor transmission. These patients also often have reduced visual acuity, myopia, nystagmus, and strabismus. CSNB1 is caused by mutations in the gene NYX, which encodes a protein involved in retinal synapse formation or synaptic transmission. CSNB2 is caused by mutations in the gene CACNA1F, which encodes a voltage-gated calcium channel Ca1.4.
Not all Congenital Stationary Night Blindness (CSNB) are inherited in X-linked pattern. There are also dominant and recessive inheritance patterns for CSNB.
Several mutations have been implicated as a cause of Oguchi disease. These include mutations in the arrestin gene or the rhodopsin kinase gene.
The condition is more frequent in individuals of Japanese ethnicity.
Jalili syndrome is a genetic disorder characterized by the combination of cone-rod dystrophy of the retina and amelogenesis imperfecta. It was characterized in 1988 by Dr. I. K. Jalili and Dr. N. J. D. Smith, following the examination of 29 members of an inbred, Arab family living within the Gaza Strip.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
The Jalili syndrome is caused by different mutations all with a linkage at the achromatopsia locus 2q11 on the metal transporter gene, CNNM4. Sequence analysis of this gene within Jalili syndrome sufferers has identified homozygosity or compound heterozygosity for several different mutations in the CNNM4 gene.
While choroideremia is an ideal candidate for gene therapy there are other potential therapies that could restore vision after it has been lost later in life. Foremost of these is stem cell therapy. A clinical trial published in 2014 found that a subretinal injection of human embryonic stem cells in patients with age-related macular degeneration and Stargardt disease was safe and improved vision in most patients. Out of 18 patients, vision improved in 10, improved or remained the same in 7, and decreased in 1 patient, while no improvement was seen in the untreated eyes. The study found "no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue." A 2015 study used CRISPR/Cas9 to repair mutations in patient-derived induced pluripotent stem cells that cause X-linked retinitis pigmentosa. This study suggests that a patient's own repaired cells could be used for therapy, reducing the risk of immune rejection and ethical issues that come with the use of embryonic stem cells.
The X-linked varieties of congenital stationary night blindness (CSNB) can be differentiated from the autosomal forms by the presence of myopia, which is typically absent in the autosomal forms. Patients with CSNB often have impaired night vision, myopia, reduced visual acuity, strabismus, and nystagmus. Individuals with the complete form of CSNB (CSNB1) have highly impaired rod sensitivity (reduced ~300x) as well as cone dysfunction. Patients with the incomplete form can present with either myopia or hyperopia.
Hemeralopia is known to occur in several ocular conditions. Cone dystrophy and achromatopsia, affecting the cones in the retina, and the anti-epileptic drug Trimethadione are typical causes. Adie's pupil which fails to constrict in response to light; Aniridia, which is absence of the iris; Albinism where the iris is defectively pigmented may also cause this. Central Cataracts, due to the lens clouding, disperses the light before it can reach the retina, is a common cause of hemeralopia and photoaversion in elderly. C.A.R (Cancer Associated Retinopathy) seen when certain cancers incite the production of deleterious antibodies against retinal components, may cause hemeralopia.
Another known cause is a rare genetic condition called Cohen Syndrome (aka Pepper Syndrome). Cohen syndrome is mostly characterized by obesity, mental retardation, and craniofacial dysmorphism due to genetic mutation at locus 8q22-23. Rarely it may have ocular complications such as hemeralopia, pigmentary chorioretinitis, optic atrophy or retinal/iris coloboma, having a serious effect on the person's vision.
Yet another cause of hemeralopia is uni- or bilateral postchiasmatic brain injury. This may also cause concomitant night blindness.
Gene therapy is currently not a treatment option, however human clinical trials for both choroideremia and Leber's congenital amaurosis (LCA) have produced somewhat promising results.
Clinical trials of gene therapy for patients with LCA began in 2008 at three different sites. In general, these studies found the therapy to be safe, somewhat effective, and promising as a future treatment for similar retinal diseases.
In 2011, the first gene therapy treatment for choroideremia was administered. The surgery was performed by Robert MacLaren, Professor of Ophthalmology at the University of Oxford and leader of the Clinical Ophthalmology Research Group at the Nuffield Laboratory of Ophthalmology (NLO).
In the study, 2 doses of the AAV.REP1 vector were injected subretinally in 12 patients with choroideremia.
There study had 2 objectives:
- to assess the safety and tolerability of the AAV.REP1 vector
- to observe the therapeutic benefit, or slowing of the retinal degeneration, of the gene therapy during the study and at a 24-month post-treatment time point
Despite retinal detachment caused by the injection, the study observed initial improved rod and cone function, warranting further study.
In 2016, researchers were optimistic that the positive results of 32 choroideremia patients treated over four and a half years with gene therapy in four countries could be long-lasting.
Oguchi disease, also called congenital stationary night blindness, Oguchi type 1 or Oguchi disease 1, is an autosomal recessive form of congenital stationary night blindness associated with fundus discoloration and abnormally slow dark adaptation.
RP may be:
(1) Non-syndromic, that is, it occurs alone, without any other clinical findings,
(2) Syndromic, with other neurosensory disorders, developmental abnormalities, or complex clinical findings, or
(3) Secondary to other systemic diseases.
- RP combined with deafness (congenital or progressive) is called Usher syndrome.
- Alport's syndrome is associated with RP and an abnormal glomerular-basement membrane leading nephrotic syndrome and inherited as X-linked dominant.
- RP combined with ophthalmoplegia, dysphagia, ataxia, and cardiac conduction defects is seen in the mitochondrial DNA disorder Kearns-Sayre syndrome (also known as Ragged Red Fiber Myopathy)
- RP combined with retardation, peripheral neuropathy, acanthotic (spiked) RBCs, ataxia, steatorrhea, is absence of VLDL is seen in abetalipoproteinemia.
- RP is seen clinically in association with several other rare genetic disorders (including muscular dystrophy and chronic granulomatous disease) as part of McLeod syndrome. This is an X-linked recessive phenotype characterized by a complete absence of XK cell surface proteins, and therefore markedly reduced expression of all Kell red blood cell antigens. For transfusion purposes these patients are considered completely incompatible with all normal and K0/K0 donors.
- RP associated with hypogonadism, and developmental delay with an autosomal recessive inheritance pattern is seen with Bardet-Biedl syndrome
Other conditions include neurosyphilis, toxoplasmosis and Refsum's disease.
This condition is linked to the X chromosome.
- Siberian Husky - Night blindness by two to four years old.
- Samoyed - More severe disease than the Husky.
Knobloch syndrome is a rare genetic disorder presenting severe eyesight problems and often a defect in the skull. It was named after W.H. Knobloch, who first described the syndrome in 1971. A usual occurrence is a degeneration of the vitreous humour and the retina, two components of the eye. This breakdown often results in the separation of the retina (the light-sensitive tissue at the back of the eye) from the eye, called retinal detachment, which can be recurrent. Extreme myopia (near-sightedness) is a common feature. The limited evidence available from electroretinography suggests a cone-rod pattern of dysfunction is also a feature.
Knobloch syndrome is caused by mutations in an autosomal recessive inherited gene. These mutations have been found in the COL18A1 gene that instructs for the formation of a protein that builds collagen XVIII. This type of collagen is found in the basement membranes of various body tissues. Its deficiency in the eye is thought to be responsible for affecting normal eye development. There are two types of Knobloch syndrome and the case has been made for a third.
When caused by mutations in the COL18A1 gene it is called Knobloch syndrome type 1. The genes causing types II and III have yet to be identified.
Knobloch syndrome is also characterised by cataracts, dislocated lens with skull defects such as occipital encephalocele and occipital aplasia. Encephalocele is a neural tube defect where the skull has not completely closed and sac-like protrusions of the brain can push through the skull; (it can also result from other causes).
In Knobloch’s syndrome this is usually seen in the occipital region, and aplasia is the underdevelopment of tissue again in this reference in the occipital area.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
Commonly affected breeds:
- Akita - Symptoms at one to three years old and blindness at three to five years old. Selective breeding has greatly reduced the incidence of this disease in this breed.
- Miniature longhaired Dachshund - Symptoms at six months old.
- Papillon - Slowly progressive with blindness at seven to eight years old.
- Tibetan Spaniel - Symptoms at three to five years old.
- Tibetan Terrier - PRA3/RCD4 disease of middle age dogs. http://www.ttca-online.org/html/Petersen-Jones_PRA_article.pdf
- Samoyed - Symptoms by three to five years old.
Achromatopsia (ACHM), also known as total color blindness, is a medical syndrome that exhibits symptoms relating to at least five conditions. The term may refer to acquired conditions such as cerebral achromatopsia, also known as color agnosia, but it typically refers to an autosomal recessive congenital color vision condition, the inability to perceive color and to achieve satisfactory visual acuity at high light levels (typically exterior daylight). The syndrome is also present in an incomplete form which is more properly defined as dyschromatopsia. It is estimated to affect 1 in 40,000 live births worldwide.
There is some discussion as to whether achromats can see color or not. As illustrated in "The Island of the Colorblind" by Oliver Sacks, some achromats cannot see color, only black, white, and shades of grey. With five different genes currently known to cause similar symptoms, it may be that some do see marginal levels of color differentiation due to different gene characteristics. With such small sample sizes and low response rates, it is difficult to accurately diagnose the 'typical achromatic conditions'. If the light level during testing is optimized for them, they may achieve corrected visual acuity of 20/100 to 20/150 at lower light levels, regardless of the absence of color. One common trait is hemeralopia or blindness in full sun. In patients with achromatopsia, the cone system and fibres carrying color information remain intact. This indicates that the mechanism used to construct colors is defective.
At least one type of autosomal dominant cone-rod dystrophy is caused by mutations in the guanylate cyclase 2D gene (GUCY2D) on chromosome 17.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
Acquired achromatopsia/dyschromatopsia is a condition associated with damage to the diencephalon (primarily the thalamus of the mid brain) or the cerebral cortex (the new brain), specifically the fourth visual association area, V4 which receives information from the parvocellular pathway involved in colour processing.
Thalamic achromatopsia/dyschromatopsia is caused by damage to the thalamus; it is most frequently caused by tumor growth since the thalamus is well protected from external damage.
Cerebral achromatopsia is a form of acquired color blindness that is caused by damage to the cerebral cortex of the brain, rather than abnormalities in the cells of the eye's retina. It is most frequently caused by physical trauma, hemorrhage or tumor tissue growth.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
When originally characterized by Giedion, there was a relatively high mortality rate due to untreated kidney failure (end stage renal disease - ESRD). The remarkable improvements in kidney transplantation have reduced the mortality of Conorenal Syndrome substantially if not eliminated it entirely. Most diagnosis of the disease occurs when children present with kidney failure – usually between the ages of 10 and 14. There are no known cures for the syndrome and management of the symptoms seems to be the typical approach.
Several other corneal ectatic disorders also cause thinning of the cornea:
- Keratoglobus is a very rare condition that causes corneal thinning primarily at the margins, resulting in a spherical, slightly enlarged eye. It may be genetically related to keratoconus.
- Pellucid marginal degeneration causes thinning of a narrow (1–2 mm) band of the cornea, usually along the inferior corneal margin. It causes irregular astigmatism that, in the early stages of the disease can be corrected by spectacles. Differential diagnosis may be made by slit-lamp examination.
- Posterior keratoconus, a distinct disorder despite its similar name, is a rare abnormality, usually congenital, which causes a nonprogressive thinning of the inner surface of the cornea, while the curvature of the anterior surface remains normal. Usually only a single eye is affected.
- Post-LASIK ectasia is a complication of LASIK eye surgery.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
Lenticonus (/len·ti·co·nus/ (len″tĭ-ko´nus)) [lens + L. conus, cone] is a rare congenital anomaly of the eye characterized by a conical protrusion on the crystalline lens capsule and the underlying cortex. It can reach a diameter of 2 to 7 mm. The conus may occur anteriorly or posteriorly. If the bulging is spherical, instead of conical, the condition is referred to as "lentiglobus". It produces a decrease in visual acuity and irregular refraction that cannot be corrected by either spectacle or contact lenses.
Biomicroscopically "lenticonus" is characterized by a transparent, localized, sharply demarcated conical projection of the lens capsule and cortex, usually axial in localization. In an early stage, retro-illumination shows an «oil droplet» configuration. Using a narrow slit, the image of a conus is observed. In a more advanced stage associated subcapsular and cortical opacities appear. Retinoscopically the oil droplet produces a pathognomonic scissors movement of the light reflex. This phenomenon is due to the different refraction in the central and the peripheral area of the lens. Ultrasonography also can illustrate the existence of a "lenticonus". A-scan ultrasonography may reveal an increased lens thickness and B- scanultrasonography may show herniated lenticular material, suggestive of a lenticonus. Amblyopia, cataract, strabismus and loss of central fixation may be observed in association with lenticonus posterior. Cataract, flecked retinopathy, posterior polymorphous dystrophy and corneal arcus juvenilis may be encountered in association with lenticonus anterior that occurs as a part of the Alport syndrome.
Exist two distinct types of "lenticonus" based on the face of the lens affected.