Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Key prevention strategies for cirrhosis are population-wide interventions to reduce alcohol intake (through pricing strategies, public health campaigns, and personal counseling), programs to reduce the transmission of viral hepatitis, and screening of relatives of people with hereditary liver diseases.
Little is known about factors affecting cirrhosis risk and progression. Research has suggested that coffee consumption appears to help protect against cirrhosis.
Hepatocellular carcinoma is a primary liver cancer that is more common in people with cirrhosis. People with known cirrhosis are often screened intermittently for early signs of this tumor, and screening has been shown to improve outcomes.
The prognosis for people with ALD depends on the liver histology as well as cofactors, such as concomitant chronic viral hepatitis. Among patients with alcoholic hepatitis, progression to liver cirrhosis occurs at 10–20% per year, and 70% will eventually develop cirrhosis. Despite cessation of alcohol use, only 10% will have normalization of histology and serum liver enzyme levels. As previously noted, the MDF has been used to predict short-term mortality (i.e., MDF ≥ 32 associated with spontaneous survival of 50–65% without corticosteroid therapy, and MDF 11) and 90-day (MELD > 21) mortality. Liver cirrhosis develops in 6–14% of those who consume more than 60–80 g of alcohol daily for men and more than 20 g daily for women. Even in those who drink more than 120 g daily, only 13.5% will suffer serious alcohol-related liver injury. Nevertheless, alcohol-related mortality was the third leading cause of death in 2003 in the United States. Worldwide mortality is estimated to be 150,000 per year.
The risk factors presently known are:
- Quantity of alcohol taken: Consumption of 60–80g per day (14g is considered one standard drink in the USA, i.e., 1.5 fl oz hard liquor, 5 fl oz wine, 12 fl oz beer; drinking a six-pack of beer daily would be in the middle of the range) for 20 years or more in men, or 20g/day for women significantly increases the risk of hepatitis and fibrosis by 7% to 47%,
- Pattern of drinking: Drinking outside of meal times increases up to 3 times the risk of alcoholic liver disease.
- Gender: Women are twice as susceptible to alcohol-related liver disease, and may develop alcoholic liver disease with shorter durations and doses of chronic consumption. The lesser amount of alcohol dehydrogenase secreted in the gut, higher proportion of body fat in women, and changes in fat absorption due to the menstrual cycle may explain this phenomenon.
- Hepatitis C infection: A concomitant hepatitis C infection significantly accelerates the process of liver injury.
- Genetic factors: Genetic factors predispose both to alcoholism and to alcoholic liver disease. Both monozygotic twins are more likely to be alcoholics and to develop liver cirrhosis than both dizygotic twins. Polymorphisms in the enzymes involved in the metabolism of alcohol, such as ADH, ALDH, CYP4502E1, mitochondrial dysfunction, and cytokine polymorphism may partly explain this genetic component. However, no specific polymorphisms have currently been firmly linked to alcoholic liver disease.
- Iron overload (Hemochromatosis)
- Diet: Malnutrition, particularly vitamin A and E deficiencies, can worsen alcohol-induced liver damage by preventing regeneration of hepatocytes. This is particularly a concern as alcoholics are usually malnourished because of a poor diet, anorexia, and encephalopathy.
The percentage of people with non-alcoholic fatty liver disease ranges from 9 to 36.9% in different parts of the world. Approximately 20% of the United States population have non-alcoholic fatty liver, and the number of people affected is increasing. This means about 75 to 100 million people in the United States are affected.
The rates of non-alcoholic fatty liver disease is higher in Hispanics, which can be attributed to high rates of obesity and type 2 diabetes in Hispanic populations. Non-alcoholic fatty liver disease is also more common among men than women in all age groups until age 60, where the prevalence between sex equalize. This is due to the protective nature of estrogen. Fatty liver and NASH occur all ages, with the highest rates in the 40- to 49-year-old age group. It is the most common liver abnormality in children ages 2 to 19.
Severe protein deficiency can cause Laennec's cirrhosis.
Two causes have been identified. The first is malnutrition, or, more specifically, protein deprivation. This is seen in starving children who have insufficient supplies of protein and therefore manufacture insufficient amounts of lipoproteins. They develop fatty livers: it is presumed that if they survive, cirrhosis will develop.
Chronic alcoholism can cause Laennec's cirrhosis. Whether or not alcohol alone can produce fatty nutritional cirrhosis has been debated for decades. Current evidence is that it can. If so, the condition should be renamed "alcoholic cirrhosis". Those who do not subscribe to the "alcohol-as-a-poison" school state that the changes to be described are the result of malnutrition common to alcoholics. They argue that alcoholics, in a sense, are no different from those in a state of chronic protein deprivation — both have protein deprivations.
Native American men have a high prevalence of non-alcoholic fatty liver disease. Two genetic mutations for this susceptibility have been identified, and these mutations provided clues to the mechanism of NASH and related diseases.
Polymorphisms (genetic variations) in the single-nucleotide polymorphisms (SNPs) T455C and C482T in APOC3 are associated with fatty liver disease, insulin resistance, and possibly hypertriglyceridemia. 95 healthy Asian Indian men and 163 healthy non-Asian Indian men around New Haven, Connecticut were genotyped for polymorphisms in those SNPs. 20% homogeneous wild both loci. Carriers of T-455C, C-482T, or both (not additive) had a 30% increase in fasting plasma apolipoprotein C3, 60% increase in fasting plasma triglyceride and retinal fatty acid ester, and 46% reduction in plasma triglyceride clearance. Prevalence of non-alcoholic fatty liver disease was 38% in carriers, 0% wild (normal). Subjects with fatty liver disease had marked insulin resistance.
HCC mostly occurs in people with cirrhosis of the liver, and so risk factors generally include factors which cause chronic liver disease that may lead to cirrhosis. Still, certain risk factors are much more highly associated with HCC than others. For example, while heavy alcohol consumption is estimated to cause 60-70% of cirrhosis, the vast majority of HCC occurs in cirrhosis attributed to viral hepatitis (although there may be overlap). Recognized risk factors include:
- Chronic viral hepatitis (estimated cause of 80% cases globally)
- Chronic hepatitis B (approximately 50% cases)
- Chronic hepatitis C (approximately 25% cases)
- Toxins:
- Alcohol abuse: the most common cause of cirrhosis
- Aflatoxin
- Iron overload state (Hemochromatosis)
- Metabolic:
- Nonalcoholic steatohepatitis: up to 20% progress to cirrhosis
- Type 2 diabetes (probably aided by obesity)
- Congenital disorders:
- Alpha 1-antitrypsin deficiency
- Wilson's disease (controversial; while some theorise the risk increases, case studies are rare and suggest the opposite where Wilson's disease actually may confer protection)
- Hemophilia, although statistically associated with higher risk of HCC, this is due to coincident chronic viral hepatitis infection related to repeated blood transfusions over lifetime.
The significance of these risk factors varies globally. In regions where hepatitis B infection is endemic, such as southeast China, this is the predominant cause. In populations largely protected by hepatitis B vaccination, such as the United States, HCC is most often linked to causes of cirrhosis such as chronic hepatitis C, obesity, and alcohol abuse.
Certain benign liver tumors, such as hepatocellular adenoma, may sometimes be associated with coexisting malignant HCC. There is limited evidence for the true incidence of malignancy associated with benign adenomas; however, the size of hepatic adenoma is considered to correspond to risk of malignancy and so larger tumors may be surgically removed. Certain subtypes of adenoma, particularly those with β-catenin activation mutation, are particularly associated with increased risk of HCC.
Children and adolescents are unlikely to have chronic liver disease, however, if they suffer from congenital liver disorders, this fact increases the chance of developing hepatocellular carcinoma. Specifically, children with biliary atresia, infantile cholestasis, glycogen-storage diseases, and other cirrhotic diseases of the liver are predisposed to developing HCC in childhood.
Young adults afflicted by the rare fibrolamellar variant of hepatocellular carcinoma may have none of the typical risk factors, i.e. cirrhosis and hepatitis.
The prevalence of FLD in the general population ranges from 10% to 24% in various countries. However, the condition is observed in up to 75% of obese people, 35% of whom progress to NAFLD, despite no evidence of excessive alcohol consumption. FLD is the most common cause of abnormal liver function tests in the United States. "Fatty livers occur in 33% of European-Americans, 45% of Hispanic-Americans, and 24% of African-Americans."
The treatment of fatty liver depends on its cause, and, in general, treating the underlying cause will reverse the process of steatosis if implemented at an early stage. Two known causes of fatty liver disease are an excess consumption of alcohol and a prolonged diet containing foods with a high proportion of calories coming from lipids. For the patients with non-alcoholic fatty liver disease with pure steatosis and no evidence of inflammation, a gradual weight loss is often the only recommendation. In more serious cases, medications that decrease insulin resistance, hyperlipidemia, and those that induce weight loss have been shown to improve liver function.
For advanced patients with non-alcoholic steatohepatitis (NASH), there are no currently available therapies.
Up to 10% of people with cirrhotic alcoholic FLD will develop hepatocellular carcinoma. The overall incidence of liver cancer in nonalcoholic FLD has not yet been quantified, but the association is well-established.
Bariatric surgery, while not currently recommended as a treatment for fatty liver disease (FLD) alone, has been shown to revert FLD and advanced steatohepatitis in over 90% of people who have undergone this surgery for the treatment of obesity.
Common causes for acute liver failure are paracetamol (acetaminophen) overdose, idiosyncratic reaction to medication (e.g. tetracycline, troglitazone), excessive alcohol consumption (severe alcoholic hepatitis), viral hepatitis (hepatitis A or B — it is extremely uncommon in hepatitis C), acute fatty liver of pregnancy, and idiopathic (without an obvious cause). Reye syndrome is acute liver failure in a child with a viral infection (e.g. chickenpox); it appears that aspirin use may play a significant role. Wilson's disease (hereditary copper accumulation) may infrequently present with acute liver failure.
The risk of hepatocellular carcinoma in type 2 diabetics is greater (from 2.5 to 7.1 times the non diabetic risk) depending on the duration of diabetes and treatment protocol. A suspected contributor to this increased risk is circulating insulin concentration such that diabetics with poor insulin control or on treatments that elevate their insulin output (both states that contribute to a higher circulating insulin concentration) show far greater risk of hepatocellular carcinoma than diabetics on treatments that reduce circulating insulin concentration. On this note, some diabetics who engage in tight insulin control (by keeping it from being elevated) show risk levels low enough to be indistinguishable from the general population. This phenomenon is thus not isolated to diabetes mellitus type 2 since poor insulin regulation is also found in other conditions such as metabolic syndrome (specifically, when evidence of non alcoholic fatty liver disease or NAFLD is present) and again there is evidence of greater risk here too. While there are claims that anabolic steroid abusers are at greater risk (theorized to be due to insulin and IGF exacerbation), the only evidence that has been confirmed is that anabolic steroid users are more likely to have hepatocellular adenomas (a benign form of HCC) transform into the more dangerous hepatocellular carcinoma.
Laennec's cirrhosis, also known as portal cirrhosis, alcoholic cirrhosis, fatty cirrhosis, or atrophic cirrhosis, is named after René Laennec, a French physician and the inventor of the stethoscope. It is a disease of the liver in which the normal lobular architecture is lost, with fibrosis (scarring) and later nodular regeneration. Laennec's cirrhosis can be associated with inflammatory polyarthritis, most commonly affecting the shoulders, elbows and knees. Osteoporosis, soft tissue swelling in peripheral joints and sometimes calcific periathritis are seen.
In the developed world, Laennec's cirrhosis most commonly affects middle-aged males, typically ages 40–60. This is the most common form of cirrhosis in the U.S. Chronic alcoholism can cause Laennec's cirrhosis.
In areas of the world afflicted with chronic starvation (Africa and Asia), the children are most commonly afflicted.
The advent of transplantation has changed survival from as low as 15% in the pretransplant era to more than 60% today. Liver transplantation is indicated for many patients with ALF, and survival rates of 56–90% can be achieved. In addition to transplantation, better critical care and the trend toward more benign causes, such as acetaminophen, all contribute to improved survival rates. Spontaneous survival is now around 40%. The application of transplantation among patients with ALF remains low, suggesting that the full potential of this modality may not be realized. Timely availability of an allograft is one of the major factors determining transplant outcomes. In the largest U.S. study, only 29% of patients received a liver graft, while 10% of the overall group (one fourth of patients listed for transplantation) died on the waiting list. Other series have reported death rates of those listed for transplant as high as 40%.
In the ALFSG, the transplantation rate was higher in the groups with lower short-term spontaneous survival, making overall survival similar in all groups: acetaminophen, 73%; drug induced, 70%; indeterminate group, 64%; and other causes,61%. Causes of death for the 101 patients who died within the 3-week period included cerebral edema, multiorgan failure, sepsis, cardiac arrhythmia or arrest and respiratory failure. The median time to death after admission was 5 days.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
Alcoholic hepatitis is characterized by myriad symptoms, which may include feeling unwell, enlargement of the liver, development of fluid in the abdomen (ascites), and modest elevation of liver enzyme levels (as determined by liver function tests). Alcoholic hepatitis can vary from mild with only liver enzyme elevation to severe liver inflammation with development of jaundice, prolonged prothrombin time, and even liver failure. Severe cases are characterized by either obtundation (dulled consciousness) or the combination of elevated bilirubin levels and prolonged prothrombin time; the mortality rate in both severe categories is 50% within 30 days of onset.
Alcoholic hepatitis is distinct from cirrhosis caused by long-term alcohol consumption. Alcoholic hepatitis can occur in patients with chronic alcoholic liver disease and alcoholic cirrhosis. Alcoholic hepatitis by itself does not lead to cirrhosis, but cirrhosis is more common in patients with long term alcohol consumption. Some alcoholics develop acute hepatitis as an inflammatory reaction to the cells affected by fatty change. This is not directly related to the dose of alcohol. Some people seem more prone to this reaction than others. This is called alcoholic steatonecrosis and the inflammation probably predisposes to liver fibrosis.
Possible causes:
- pregnancy
- androgens
- birth control pills
- antibiotics (such as TMP/SMX)
- abdominal mass (e.g. cancer)
- biliary atresia and other pediatric liver diseases
- biliary trauma
- congenital anomalies of the biliary tract
- gallstones
- acute hepatitis
- cystic fibrosis
- intrahepatic cholestasis of pregnancy (obstetric cholestasis)
- primary biliary cirrhosis, an autoimmune disorder
- primary sclerosing cholangitis, associated with inflammatory bowel disease
- some drugs (e.g. flucloxacillin and erythromycin)
Drugs such as gold salts, nitrofurantoin, anabolic steroids, chlorpromazine, prochlorperazine, sulindac, cimetidine, erythromycin, estrogen, and statins can cause cholestasis and may result in damage to the liver.
Alcoholic hepatitis is hepatitis (inflammation of the liver) due to excessive intake of alcohol. It is usually found in association with fatty liver, an early stage of alcoholic liver disease, and may contribute to the progression of fibrosis, leading to cirrhosis. Signs and symptoms of alcoholic hepatitis include jaundice, ascites (fluid accumulation in the abdominal cavity), fatigue and hepatic encephalopathy (brain dysfunction due to liver failure). Mild cases are self-limiting, but severe cases have a high risk of death. Severe cases may be treated with glucocorticoids.
Patients with ESKD are at increased overall risk for cancer. This risk is particularly high in younger patients and gradually diminishes with age. Medical specialty professional organizations recommend that physicians do not perform routine cancer screening in patients with limited life expectancies due to ESKD because evidence does not show that such tests lead to improved patient outcomes.
CKD increases the risk of cardiovascular disease, and people with CKD often have other risk factors for heart disease, such as high blood lipids. The most common cause of death in people with CKD is cardiovascular disease rather than kidney failure.
Chronic kidney disease results in worse all-cause mortality (the overall death rate) which increases as kidney function decreases. The leading cause of death in chronic kidney disease is cardiovascular disease, regardless of whether there is progression to stage 5.
While renal replacement therapies can maintain people indefinitely and prolong life, the quality of life is negatively affected. Kidney transplantation increases the survival of people with stage 5 CKD when compared to other options; however, it is associated with an increased short-term mortality due to complications of the surgery. Transplantation aside, high-intensity home hemodialysis appears to be associated with improved survival and a greater quality of life, when compared to the conventional three-times-a-week hemodialysis and peritoneal dialysis.
The "APOL1" gene has been proposed as a major genetic risk locus for a spectrum of nondiabetic renal failure in individuals of African origin, these include HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies. Two western African variants in APOL1 have been shown to be associated with end stage kidney disease in African Americans and Hispanic Americans.
Untreated, the disease has a mortality rate upwards of 90%. Cats treated in the early stages can have a recovery rate of 80–90%. Left untreated, the cats usually die from severe malnutrition or complications from liver failure. Treatment usually involves aggressive feeding through one of several methods.
Cats can have a feeding tube inserted by a veterinarian so that the owner can feed the cat a liquid diet several times a day. They can also be force-fed through the mouth with a syringe. If the cat stops vomiting and regains its appetite, it can be fed in a food dish normally. The key is aggressive feeding so the body stops converting fat in the liver. The cat liver has a high regeneration rate and the disease will eventually reverse assuming that irreparable damage has not been done to the liver.
The best method to combat feline hepatic lipidosis is prevention and early detection. Obesity increases the chances of onset. In addition, if a cat stops eating for 1–2 days, it should be taken to a vet immediately. The longer the disease goes untreated, the higher the mortality rate.
Cholestasis is a condition where bile cannot flow from the liver to the duodenum. The two basic distinctions are an obstructive type of cholestasis where there is a mechanical blockage in the duct system that can occur from a gallstone or malignancy, and metabolic types of cholestasis which are disturbances in bile formation that can occur because of genetic defects or acquired as a side effect of many medications.
Chronic kidney disease (CKD) has numerous causes. The most common causes of CKD are diabetes mellitus and long-term, uncontrolled hypertension. Polycystic kidney disease is another well-known cause of CKD. The majority of people afflicted with polycystic kidney disease have a family history of the disease. Other genetic illnesses affect kidney function, as well.
Overuse of common drugs such as ibuprofen, and acetaminophen (paracetamol) can also cause chronic kidney disease.
Some infectious disease agents, such as hantavirus, can attack the kidneys, causing kidney failure.
In those with cirrhosis, the risk of developing hepatic encephalopathy is 20% per year, and at any time about 30–45% of people with cirrhosis exhibit evidence of overt encephalopathy. The prevalence of minimal hepatic encephalopathy detectable on formal neuropsychological testing is 60–80%; this increases the likelihood of developing overt encephalopathy in the future. Once hepatic encephalopathy has developed, the prognosis is determined largely by other markers of liver failure, such as the levels of albumin (a protein produced by the liver), the prothrombin time (a test of coagulation, which relies on proteins produced in the liver), the presence of ascites and the level of bilirubin (a breakdown product of hemoglobin which is conjugated and excreted by the liver). Together with the severity of encephalopathy, these markers have been incorporated into the Child-Pugh score; this score determines the one- and two-year survival and may assist in a decision to offer liver transplantation.
In acute liver failure, the development of severe encephalopathy strongly predicts short-term mortality, and is almost as important as the nature of the underlying cause of the liver failure in determining the prognosis. Historically, widely used criteria for offering liver transplantation, such as King's College Criteria, are of limited use and recent guidelines discourage excessive reliance on these criteria. The occurrence of hepatic encephalopathy in people with Wilson's disease (hereditary copper accumulation) and mushroom poisoning indicates an urgent need for a liver transplant.