Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease caused by a group of ruminant gamma herpes viruses including Alcelaphine gammaherpesvirus 1 (AlHV-1) and Ovine gammaherpesvirus 2 (OvHV-2) These viruses cause unapparent infection in their reservoir hosts (sheep with OvHV-2 and wildebeest with AlHV-1), but are usually fatal in cattle and other ungulates such as deer, antelope, and buffalo.
BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia, bison in the US and in pastoralist herds in Eastern and Southern Africa.
Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Pére Davids deer, Bali cattle and bison, with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days. In contrast, post infection cattle will usually survive a week or more.
PRP is very rare and similar to SSPE but without intracellular inclusion bodies.
Only 20 patients have been identified since first recognized in 1974.
The term "bovine malignant catarrhal fever" has been applied to three different patterns of disease:
- In Africa, wildebeests carry a lifelong infection of AlHV-1 but are not affected by the disease. The virus is passed from mother to offspring and shed mostly in the nasal secretions of wildebeest calves under one year old. Wildebeest associated MCF is transmitted from wildebeest to cattle normally following the wildebeest calving period. Cattle of all ages are susceptible to the disease, with a higher infection rate in adults, particularly in peripartuent females. Cattle are infected by contact with the secretions, but do not spread the disease to other cattle. Because no commercial treatment or vaccine is available for this disease, livestock management is the only method of control. This involves keeping cattle away from wildebeest during the critical calving period. This results in Massai pastoralists in Tanzania and Kenya being excluded from prime pasture grazing land during the wet season leading to a loss in productivity. In Eastern and Southern Africa MCF is classed as one of the five most important problems affecting pastoralists along with East coast fever, contagious bovine pleuropneumonia, foot and mouth disease and anthrax.Hartebeests and topi also may carry the disease. However, hartebeests and other antelopes are infected by a variant, Alcelaphine herpesvirus 2.
- Throughout the rest of the world, cattle and deer contract BMCF by close contact with sheep or goats during lambing. The natural host reservoir for Ovine herpesvirus 2 is the subfamily Caprinae (sheep and goats) whilst MCF affected animals are from the families Bovidae, Cervidae and suidae. Susceptibility to OHV-2 varies by species, with domestic cattle and zebus somewhat resistant, water buffalo and most deer somewhat susceptible, and bison, Bali cattle, and Pere David's deer very susceptible. OHV-2 viral DNA has been detected in the alimentary, respiratory and urino-genital tracts of sheep all of which could be possible transmission routes. Antibody from sheep and from cattle with BMCF is cross reactive with AlHV-1.
- AHV-1/OHV-2 can also cause problems in zoological collections, where inapparently infected hosts (wildebeest and sheep) and susceptible hosts are often kept in close proximity.
- Feedlot bison in North America not in contact with sheep have also been diagnosed with a form of BMCF. OHV-2 has been recently documented to infect herds of up to 5 km away from the nearest lambs, with the levels of infected animals proportional to the distance away from the closest herds of sheep.
The incubation period of BMCF is not known, however intranasal challenge with AHV-1 induced MCF in one hundred percent of challenged cattle between 2.5 and 6 weeks.
Shedding of the virus is greater from 6–9 month old lambs than from adults. After experimental infection of sheep, there is limited viral replication in nasal cavity in the first 24 hours after infection, followed by later viral replication in other tissues.
Although no specific treatment exists, the disease can be managed with anticonvulsants, physiotherapy, etc.
Acute cerebellar ataxia is the most common cause of unsteady gait in children. The condition is rare in children older than ten years of age. Most commonly acute cerebellar ataxia affects children between age 2 and 7 years.
Possible causes of acute cerebellar ataxia include varicella infection, as well as infection with influenza, Epstein-Barr virus, Coxsackie virus, Echo virus or mycoplasma.
Prognosis is poor, however, current analysis suggests that those associated with thymoma, benign or malignant, show a less favorable prognosis (CASPR2 Ab positive).
Most common cause of autoimmune encephalitis after acute demyelinating encephalitis in England. More than 500 cases have been reported in literature till 2013. In California Encephalitis Project it was found >4 times as frequently as herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV), and West Nile virus (WNV). Among patients with first-onset schizophrenia incidence varies between 6–10%.
- Age – frequently 5–76 years, Median age of patients was 23 years
- Sex – 80% Female
AIDS Dementia Complex (ADC) is not a true opportunistic infection; it is one of the few conditions caused directly by HIV itself. However, the cause of ADC can be difficult to discern because the central nervous system can be damaged by a number of other causes related to HIV infection:
- opportunistic infections
- Primary cerebral lymphoma or metastasis of other AIDS-related cancers
- direct effects of HIV in the brain
- toxic effects of drug treatments
- malnutrition
Many researchers believe that HIV damages the vital brain cells, neurons, indirectly. According to one theory, HIV either infects or activates cells that protect the brain, known as macrophages and microglia. These cells then produce toxins that can set off a series of reactions that instruct neurons to kill themselves. The infected macrophages and microglia also appear to produce additional factors such as chemokines and cytokines that can affect neurons as well as other brain cells known as astrocytes. The affected astrocytes, which normally nurture and protect neurons, also may now end up harming neurons. HIV protein gp120 inhibits the stem cells in the brain from producing new nerve cells. In the neuronal cells, the HIV gp120 induces mitochondrial-death proteins like caspases, which may influence the upregulation of the death receptor Fas leading to apoptosis. Researchers hope that new drugs under investigation will interfere with the detrimental cycle and prevent neuron death.
HIV-associated neurocognitive disorders (HAND) are neurological disorders associated with HIV infection and AIDS. HAND may include neurological disorders of various severity. HIV-associated neurocognitive disorders are associated with a metabolic encephalopathy induced by HIV infection and fueled by immune activation of macrophages and microglia. These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of ADC are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss.
ADC typically occurs after years of HIV infection and is associated with low CD4+ T cell levels and high plasma viral loads. It is sometimes seen as the first sign of the onset of AIDS. Prevalence is between 10–24% in Western countries and has only been seen in 1–2% of India-based infections. With the advent of highly active antiretroviral therapy (HAART), the incidence of ADC has declined in developed countries, although its prevalence is increasing. HAART may prevent or delay the onset of ADC in people with HIV infection, and may also improve mental function in people who already have ADC.
Dementia only exists when neurocognitive impairment in the patient is severe enough to interfere markedly with day-to-day function. That is, the patient is typically unable to work and may not be able to take care of him or herself. Before this, the patient is said to have a mild neurocognitive disorder.
Estimates of the rate of HCV vertical transmission range from 2–8%; a 2014 systematic review and meta-analysis found the risk to be 5.8% in HCV-positive, HIV-negative women. The same study found the risk of vertical transmission to be 10.8% in HCV-positive, HIV-positive women. Other studies have found the risk of vertical transmission to be as high as 44% among HIV-positive women. The risk of vertical transmission is higher when the virus is detectable in the mother's blood.
Evidence does not indicate that mode of delivery (i.e. vaginal vs. cesarean) has an effect on vertical transmission.
For women who are HCV-positive and HIV-negative, breastfeeding is safe; however, CDC guidelines suggest avoiding breastfeeding if a woman's nipples are "cracked or bleeding" to reduce the risk of transmission.
Persons infected with HIV have a particularly high burden of HIV-HCV co-infection. In a recent study by the WHO, the likelihood of being infected with hepatitis C virus was six times greater in individuals who also had HIV. The prevalence of HIV-HCV co-infection worldwide was estimated to be 6.2% representing more than 2.2 million people. Intravenous drug use was an independent risk factor for HCV infection. In the WHO study, the prevalence of HIV-HCV co-infection was markedly higher at 82.4% in those who injected drugs compared to the general population (2.4%). In a study of HIV-HCV co-infection among HIV positive men who have sex with men (MSM), the overall prevalence of anti-hepatitis C antibodies was estimated to be 8.1% and increased to 40% among HIV positive MSM who also injected drugs.
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
This depends on the degree of hepatocellular necrosis that has occurred. Decreases in the SDH and prothrombin time along with improvement in appetite are the best positive predictive indicators of recovery. GGT may remain elevated for weeks even if the horse is recovering. Horses that survive for greater than one week and that continue to eat usually recover. Cases with rapid progression of clinical signs, uncontrollable encephalopathy, haemorrhage or haemolysis have a poor prognosis. Horses that display clinical signs have a mortality rate of 50–90%.
This condition most commonly occurs after the administration of a horse origin biological agent such as equine-derived antiserum, and usually occurs 4–10 weeks after the event. Diseases that have been vaccinated against using equine-origin antiserum, resulting in subsequent Theiler's disease, include: African horse sickness, Eastern and Western Equine Encephalitis, "Bacillus anthracis", tetanus antitoxin, "Clostridium perfringens", "Clostridium botulinum", "Streptococcus equi" subspecies "equi", Equine influenza, Equine herpesvirus type 1, pregnant mare's serum, and plasma. Although it occurs sporadically, It appears to be spreadable within a premises, and there have been outbreaks occurring on farms involving multiple horses over several months. In the Northern hemisphere it is most common between August to November. It is seen almost exclusively in adult horses, and lactating broodmares given tetanus antitoxin post foaling may be more susceptible.
In mammals, each "Bartonella" species is highly adapted to its reservoir host as the result of intracellular parasitism and can persist in the bloodstream of the host. Intraerythrocytic parasitism is only observed in the acute phase of Carrión´s disease. "Bartonella" species also have a tropism for endothelial cells, observed in the chronic phase of Carrión´s disease (also known as "verruga Peruana") and bacillary angiomatosis.
Pathological response can vary with the immune status of the host. Infection with "B. henselae" can result in a focal suppurative reaction (CSD in immunocompetent patients), a multifocal angioproliferative response (bacillary angiomatosis in immunocompromised patients), endocarditis, or meningitis.
In children, most cases are associated with neuroblastoma and most of the others are suspected to be associated with a low-grade neuroblastoma that spontaneously regressed before detection. In adults, most cases are associated with breast carcinoma or small-cell lung carcinoma. It is one of the few paraneoplastic (meaning 'indirectly caused by cancer') syndromes that occurs in both children and adults, although the mechanism of immune dysfunction underlying the adult syndrome is probably quite different.
It is hypothesized that a viral infection (perhaps St. Louis encephalitis, Epstein-Barr, Coxsackie B, enterovirus, or just a flu) causes the remaining cases, though a direct connection has not been proven, or in some cases Lyme disease.
OMS is not generally considered an infectious disease. OMS is not passed on genetically.
Currently there are no clinically established laboratory investigations available to predict prognosis or therapeutic response.
Tumors in children who develop OMS tend to be more mature, showing favorable histology and absence of n-myc oncogene amplification than similar tumors in children without symptoms of OMS. Involvement of local lymph nodes is common, but these children rarely have distant metastases and their prognosis, in terms of direct morbidity and mortality effects from the tumor, is excellent. The three-year survival rate for children with non-metastatic neuroblastoma and OMS was 100% according to Children’s Cancer Group data (gathered from 675 patients diagnosed between 1980 and 1994); three-year survival in comparable patients with OMS was 77%. Although the symptoms of OMS are typically steroid-responsive and recovery from acute symptoms of OMS can be quite good, children often suffer lifelong neurologic sequelae that impair motor, cognitive, language, and behavioral development.
Most children will experience a relapsing form of OMS, though a minority will have a monophasic course and may be more likely to recover without residual deficits. Viral infection may play a role in the reactivation of disease in some patients who had previously experienced remission, possibly by expanding the memory B cell population. Studies have generally asserted that 70-80% of children with OMS will have long-term neurologic, cognitive, behavioral, developmental, and academic impairment. Since neurologic and developmental difficulties have not been reported as a consequence of neuroblastoma or its treatment, it is thought that these are exclusively due to the immune mechanism underlying OMS.
One study concludes that: ""Patients with OMA and neuroblastoma have excellent survival but a high risk of neurologic sequelae. Favourable disease stage correlates with a higher risk for development of neurologic sequelae. The role of anti-neuronal antibodies in late sequelae of OMA needs further clarification"."
Another study states that: ""Residual behavioral, language, and cognitive problems occurred in the majority"."
An initial comprehensive study of 24 known cases was conducted by multiple doctors from various disciplines at the Mayo Clinic. They identified the cause of this neurological disease to be occupational exposure to aerosolized pig neural tissue. Investigators from the Minnesota Department of Health (MDH) simultaneously determined that the 70 ppsi pressure used to liquefy and extract the pig brains caused the aerosolization of the pig neural tissue, sending it into the air in a fine mist. The workers closest in proximity to the "head" table, the area in the plant where high pressured air was used to evacuate the brain tissue from the pig's skull, were the most likely to be affected. The aerosolized mist was inhaled and readily absorbed into the workers' mucus membranes. The pig neural tissue was recognized by their systems as foreign and an immune response was initiated. The pig antigen was found most prominently in the nerve roots of the spine which were also swollen. Researchers determined that the irritation was due to the voltage-gated potassium channels being blocked. They identified 125 1-α-dendrotoxin as the antagonist that binds to and blocks the channels, causing an intracellular build-up of potassium ions which causes inflammation and irritation, and consequently, hyper-excitability in the peripheral nervous system. It is this hyper-excitability that leads to the tingling, numbness, pain, and weakness.
Researchers from the Mayo Clinic developed a mouse model that received twice daily liquefied pig neural tissue intranasally to replicate the symptoms that the workers were experiencing. Physiological testing indicated signature antibodies in the mouse model at 100% in potassium channel antibodies and myelin basic antibodies, and 91% in calcium channel antibodies. This model allowed the researchers to decipher what was causing these neurological symptoms. It was found that the potassium channels were being blocked so that inflammation was occurring at the nerve root and causing hyper-excitability down the peripheral nerves.
Uveitis may be an immune response to fight an infection inside the eye. While representing the minority of patients with uveitis, such possible infections include:
- brucellosis
- leptospirosis
- Lyme disease
- presumed ocular histoplasmosis syndrome
- syphilis
- toxocariasis
- toxoplasmic chorioretinitis
- tuberculosis
- Zika fever
The incidence of RCVS is unknown, but it is believed to be "not uncommon", and likely under-diagnosed. One small, possibly biased study found that the condition was eventually diagnosed in 45% of outpatients with sudden headache, and 46% of outpatients with thunderclap headache.
The average age of onset is 42, but RCVS has been observed in patients aged from 19 months to 70 years. Children are rarely affected. It is more common in females, with a female-to-male ratio of 2.4:1.
Over 40 laboratory tests were initially conducted to rule out various pathogens and environmental toxins. These tests were used to try to identify potential viruses carried by humans, pigs, or both, including rotoviruses, adenoviruses, hepatitis A, and hepatitis E. They also tried to identify bacteria such as salmonella and escherichia coli (e. coli), and parasites such as Giardia and cryptosporidium that could be causing the symptoms. All were ruled out.
Neurodegenerative diseases were considered specifically because of the similarity of symptoms and animal involvement thus included investigation of prion associated diseases such as bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD), and variant Creutzfeldt–Jakob disease (vCJD). These all have highly transmissible pathogenic agents that induce brain damage. Since no pathogenic agent had been found, these diseases were ruled out as being related.
Next two very similar neuropathies were ruled out. Guillain–Barré syndrome (GBS) induces an acute autoimmune response which affects the Schwann cells in the peripheral nervous system. GBS is usually triggered by an infection that causes weakness and tingling that may lead to muscle loss. This condition may be life-threatening if muscle atrophy ascends to affect the pulmonary or cardiac systems. So far, no infectious agents have been found that relate to the current disease, progressive infammatory neuropathy. They looked at chronic inflammatory demyelinating polyneuropathy (CIDP) which is characterized by progressive weakness and sensory impairment in the arms and legs. Damage occurs to the myelin sheath in the peripheral nervous system. As doctors at the Mayo Clinic were beginning to note, the problem they were seeing in progressive inflammatory neuropathy was occurring in the spinal nerve roots.
Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of progressive, invariably fatal, conditions that affect the brain (encephalopathies) and nervous system of many animals, including humans. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a "Spiroplasma" infection. Mental and physical abilities deteriorate and myriad tiny holes appear in the cortex causing it to appear like a sponge (hence spongiform) when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.
Prion diseases of humans include Creutzfeldt–Jakob disease—which has four main forms, the sporadic (sCJD), the hereditary/familiar (fCJD), the iatrogenic (iCJD) and the variant form (vCJD)—Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, kuru, and the recently discovered variably protease-sensitive prionopathy. These conditions form a spectrum of diseases with overlapping signs and symptoms. TSEs in non-human mammals include scrapie in sheep, bovine spongiform encephalopathy (BSE)—popularly known as 'mad cow's disease'—in cattle and chronic wasting disease (CWD) in deer and elk. The variant form of Creutzfeldt–Jakob disease is caused by exposure to bovine spongiform encephalopathy prions.
Unlike other kinds of infectious disease, which are spread by agents with a DNA or RNA genome (such as virus or bacteria), the infectious agent in TSEs is believed to be a prion, thus being composed solely of protein material. Misshapen prion proteins carry the disease between individuals and cause deterioration of the brain. TSEs are unique diseases in that their aetiology may be genetic, sporadic, or infectious via ingestion of infected foodstuffs and via iatrogenic means (e.g., blood transfusion). Most TSEs are sporadic and occur in an animal with no prion protein mutation. Inherited TSE occurs in animals carrying a rare mutant prion allele, which expresses prion proteins that contort by themselves into the disease-causing conformation. Transmission occurs when healthy animals consume tainted tissues from others with the disease. In the 1980s and 1990s, bovine spongiform encephalopathy (BSE) spread in cattle in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. In turn, consumption (by humans) of bovine-derived foodstuff which contained prion-contaminated tissues resulted in an outbreak of the variant form of Creutzfeldt–Jakob disease in the 1990s and 2000s.
Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. Normal sterilization procedures such as boiling or irradiating materials fail to render prions non-infective.
The direct cause of the symptoms is believed to be either constriction or dilation of blood vessels in the brain. The pathogenesis is not known definitively, and the condition is likely to result from multiple different disease processes.
Up to two-thirds of RCVS cases are associated with an underlying condition or exposure, particularly vasoactive or recreational drug use, complications of pregnancy (eclampsia and pre-eclampsia), and the adjustment period following childbirth called "puerperium". Vasoactive drug use is found in about 50% of cases. Implicated drugs include selective serotonin reuptake inhibitors, weight-loss pills such as Hydroxycut, alpha-sympathomimetic decongestants, acute migraine medications, pseudoephedrine, epinephrine, cocaine, and cannabis, among many others. It sometimes follows blood transfusions, certain surgical procedures, swimming, bathing, high altitude experiences, sexual activity, exercise, or coughing. Symptoms can take days or a few months to manifest after a trigger.
Following a study and publication in 2007, it is also thought SSRIs, uncontrolled hypertension, endocrine abnormality, and neurosurgical trauma are indicated to potentially cause vasospasm.