Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
CHILD syndrome occurs almost exclusively in females. Only 2 known cases have been reported in males, one having a normal 46,XY karyotype, suggesting an early postzygotic somatic mutation.
CHILD syndrome is not fatal unless there are problems with the internal organs. The most common causes of early death in people with the syndrome are cardiovascular malformations. However, central nervous system, skeletal, kidney, lung, and other visceral defects also contribute significantly.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Until recently, the medical literature did not indicate a connection among many genetic disorders, both genetic syndromes and genetic diseases, that are now being found to be related. As a result of new genetic research, some of these are, in fact, highly related in their root cause despite the widely varying set of medical symptoms that are clinically visible in the disorders. Ellis–van Creveld syndrome is one such disease, part of an emerging class of diseases called ciliopathies. The underlying cause may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases. Known ciliopathies include primary ciliary dyskinesia, Bardet–Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel–Gruber syndrome and some forms of retinal degeneration.
Weyers acrofacial dysostosis is due to another mutation in the EVC gene and hence is allelic with Ellis–van Creveld syndrome.
Ellis–van Creveld syndrome often is the result of founder effects in isolated human populations, such as the Amish and some small island inhabitants. Although relatively rare, this disorder does occur with higher incidence within founder-effect populations due to lack of genetic variability. Observation of the inheritance pattern has illustrated that the disease is autosomal recessive, meaning that both parents have to carry the gene in order for an individual to be affected by the disorder.
Ellis–van Creveld syndrome is caused by a mutation in the "EVC" gene, as well as by a mutation in a nonhomologous gene, "EVC2", located close to the EVC gene in a head-to-head configuration. The gene was identified by positional cloning. The EVC gene maps to the chromosome 4 short arm (4p16). The function of a healthy EVC gene is not well understood at this time.
Microlissencephaly is listed in Orphanet database as a rare disease. There is no much information available about the epidemiology of microlissencepahly in literature. A PhD thesis has estimated the prevalence of microlissencepahly in South–Eastern Hungary between July 1992 and June 2006 to be a case every 91,000 live births (0.11:10,000).
Microlissencephaly usually leads to an early fatal outcome during the neonatal period.
Mesomelia refers to conditions in which the middle parts of limbs are disproportionately short. When applied to skeletal dysplasias, mesomelic dwarfism describes generalised shortening of the forearms and lower legs. This is in contrast to rhizomelic dwarfism in which the upper portions of limbs are short such as in achondroplasia.
Forms of mesomelic dwarfism currently described include:
- Langer mesomelic dysplasia
- Ellis–van Creveld syndrome
- Robinow syndrome
- Léri–Weill dyschondrosteosis
Individuals affected by certain ED syndromes cannot perspire. Their sweat glands may function abnormally or may not have developed at all because of inactive proteins in the sweat glands. Without normal sweat production, the body cannot regulate temperature properly. Therefore, overheating is a common problem, especially during hot weather. Access to cool environments is important.
Several studies have examined salivary flow rate in individuals and found parotid and submandibular salivary flow ranging from 5 to 15 times lower than average. This is consistent with the salivary glands being of ectodermal origin, although some findings have suggested that there is also mesodermal input.
Most of the time, natal teeth are not related to a medical condition. However, sometimes they may be associated with:
- Ellis–van Creveld syndrome
- Hallermann–Streiff syndrome
- Pierre Robin syndrome
- Sotos syndrome
Natal teeth are teeth that are present above the gumline (have already erupted) at birth, and neonatal teeth are teeth that emerge through the gingiva during the first month of life (the neonatal period).
The incidence of neonatal teeth varies considerably, between 1:700 and 1:30,000 depending on the type of study; the highest prevalence is found in the only study that relies on personal examination of patients.
Future studies will look further into the relationship of talon cusp and Rubinstein-Taybi syndrome and other oral-facial-digital syndromes. A former study showed a direct correlation in which 45 affected patients with Rubinstein-Taybi syndrome, 92% of these patients had talon cusp. Other researchers are attempting to trace talon cusp to ancestors and comparing dentition to modern humans. Another study done in 2007 examined the dentition of 301 Native American Indian skeletons for the presence or absence of talon cusp. The results showed five skeletons (2 percent) in the population had the trait.
In 2011, only 21 cases of talon cusp have been reported and are in literature. It appears that as of 2014 and 2015, additional research continues in hopes of finding the cause and mechanism of talon cusp. With the majority of cases of talon cusp being unreported, it remains difficult to conduct tests, come up with conclusions, conduct surgery and perform research with small numbers.
The cause of talon cusp is unknown. The anomaly can occur due to genetic and environmental factors but the onset can be spontaneous. Prevention is difficult because the occurrence happens during the development of teeth.
Talon cusp affects men and women equally, however the majority of reported cases are of the male gender. Individuals of Asian, Arabic, Native American and Inuit descent are affected more commonly. Talon cusp is also highly observed in patients with orofacial digital II syndrome and Rubinstein Taybi syndrome. Other anomalies that occur with talon cusp can include peg laterals, supernumerary teeth, dens envaginatus, agenesis and impaction. A person belonging to one of these particular demographics or one who has any of these deformities or syndromes may have a higher risk of having a talon cusp.
Susac's syndrome is named for Dr. John Susac (1940–2012), of Winter Haven, Florida, who first described it in 1979. Susac's syndrome is a very rare disease, of unknown cause, and many persons who experience it do not display the bizarre symptoms named here. Their speech can be affected, such as the case of a female of late teens who suffered speech issues and hearing problems, and many experience unrelenting and intense headaches and migraines, some form of hearing loss, and impaired vision. The problem usually corrects itself, but this can take up to five years. In some cases, subjects can become confused. The syndrome usually affects women around the age of 18 years, with female to male ratio of cases of 2:1.
William F. Hoyt was the first to call the syndrome "Susac syndrome" and later Robert Daroff asked Dr. Susac to write an editorial in Neurology about the disorder and to use the eponym of Susac syndrome in the title, forever linking this disease with him.
Susac's syndrome (retinocochleocerebral vasculopathy) is a very rare form of microangiopathy characterized by encephalopathy, branch retinal artery occlusions and hearing loss. The cause is unknown but the current thinking is that antibodies are produced against endothelial cells in tiny arteries which leads to damage and the symptoms related to the illness. Despite this being an extremely rare disease, there are 4 registries collecting data on the illness; two are in the United States, one is in Germany and the fourth is in Portugal.
Oudtshoorn is a town in Western Cape (formerly Cape Province), South Africa, where KWE ("Oudtshoorn skin") was first described. The disorder is quite prevalent among Afrikaners of South Africa, a population which can be defined as caucasoid native-speakers of Afrikaans, with northwestern European lineage. Among this group, KWE occurs at a rate of approximately 1/7,200.
This relatively high rate of occurrence has been attributed to the founder effect, in which a small, often consanguinous population is formed out of the larger ancestral population, resulting in a loss of genetic diversity. In the context of KWE, the founder effect was confirmed by haplotype analysis, which indicates that the chromosomal origin of a possible genetic mutation responsible for the disorder is particularly common among affected Afrikaners. This is also true in other South Africans of European descent with KWE, and the chromosome of interest in both these and Afrikaner patients strongly points to an unspecified ancestor or ancestral group that may have settled around the Oudtshoorn area.
A second lineage known to exhibit KWE has been reported in Germany, although there it is less prevalent and appears to involve the chromosome from a different ancestral origin than that seen in Afrikaners. KWE has also been noted in other countries around the northwestern region of Europe, such as Denmark.
KWE is of unknown cause, as at the present time, no specific mutation of any gene has been established as the cause of the disorder. Research has shown, however, that the gene involved is located on human chromosome 8.
A candidate gene is a gene that is suspected to cause a disease or disorder. In KWE, this gene is known to be located in the area between chromosome 8q22 and 8q23. Within this region, the occurrence of loss of heterozygosity (simultaneous loss of function in both alleles of a gene) has been associated with malignancy, including certain types of breast and lung cancer. During the investigation for a KWE candidate gene in this same region, twelve protein transcripts were evaluated between microsatellite markers D8S550 and D8S1759, which is a critical area shown to be the source of KWE pathogenesis. Among the twelve transcripts identified, one corresponded to the "BLK" gene, which encodes the enzyme "B-lymphoid tyrosine kinase". Four other of these transcripts included a myotubularin ("MTMR8"), a potential human homologue of the mouse "Amac1" enzyme, a transcript similar to the mouse "L-threonine 3-dehydrogenase" gene, and one similar to a human oncogene. The remaining seven transcripts did not resemble any currently known genes. In all, none of the twelve transcripts displayed any evidence of pathogenic involvement with KWE. As a transcriptional map of this critical area is being drawn, based on microsatellite identification, haplotype analysis and other measures; localization of the gene associated with KWE pathogenesis is an ongoing process.
With rest and quadriceps flexibility exercises the condition settles with no secondary disability. Sometimes, if the condition does not settle, calcification appears in the ligament. This condition is comparable to Osgood-Schlatter’s disease and usually recovers spontaneously. If rest fails to provide relief, the abnormal area is removed and the paratenon is stripped.
The condition is usually seen in athletic individuals typically between 10–14 years of age. Following a strain or partial rupture of patellar ligament the patient develops a traction ‘tendinitis’ characterized by pain and point tenderness at the inferior (lower) pole of the patella associated with focal swelling.
Children with cerebral palsy are particularly prone to SLJ 4.
Despite the grave initial presentation in some of the patients, most of the patients survive the initial acute event, with a very low rate of in-hospital mortality or complications. Once a patient has recovered from the acute stage of the syndrome, they can expect a favorable outcome and the long-term prognosis is excellent. Even when ventricular systolic function is heavily compromised at presentation, it typically improves within the first few days and normalises within the first few months. Although infrequent, recurrence of the syndrome has been reported and seems to be associated with the nature of the trigger.
Takotsubo cardiomyopathy is rare, affecting between 1.2% and 2.2% of people in Japan and 2% to 3% in western countries who suffer a myocardial infarction. It also affects far more women than men with 90% of cases being women, most postmenopausal. Scientists believe one reason is that estrogen causes the release of catecholamine and glucocorticoid in response to mental stress. It is not likely for the same recovered patient to experience the syndrome twice, although it has happened in rare cases. The average ages at onset are between 58 and 75 years. Less than 3% of cases occurred in patients under age 50.
Polar T syndrome is a condition found in polar explorers, caused by a reduction in levels of the thyroid hormone T. Its effects include forgetfulness, cognitive impairment and mood disturbances. It can exhibit itself in a fugue state known as the "Antarctic stare".
It is regarded as one of the contributory causes of winter-over syndrome.
About 1 in 4,000 children in the United States will develop mitochondrial disease by the age of 10 years. Up to 4,000 children per year in the US are born with a type of mitochondrial disease. Because mitochondrial disorders contain many variations and subsets, some particular mitochondrial disorders are very rare.
The average number of births per year among women at risk for transmitting mtDNA disease is estimated to approximately 150 in the United Kingdom and 800 in the United States.