Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The reported incidence of constriction ring syndrome varies from 1/1200 and 1/15000 live births. The prevalence is equally in male and female.
Fetomaternal factors like prematurity, maternal illnes, low birth weight and maternal drug exposure are predisposing factors for the constriction ring syndrome.
No positive relationship between CRS and genetic inheritance has been reported.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Ho–Kaufman–Mcalister syndrome, also known as the Chen-Kung Ho–Kaufman–Mcalister syndrome, is a rare congenital malformation syndrome where infants are born with a cleft palate, micrognathia, Wormian bones, congenital heart disease, dislocated hips, bowed fibulae, preaxial polydactyly of the feet, abnormal skin patterns, and most prominently, missing tibia. The etiology is unknown. Ho–Kaufman–Mcalister syndrome is named after Chen-Kung Ho, R.L. Kaufman, and W.H. Mcalister who first described the syndrome in 1975 at Washington University in St. Louis. It is considered a rare disease by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH).
Dysmelia can be caused by
- inheritance of abnormal genes, e.g. polydactyly, ectrodactyly or brachydactyly, symptoms of deformed limbs then often occur in combination with other symptoms (syndromes)
- external causes during pregnancy (thus not inherited), e.g. via amniotic band syndrome
- teratogenic drugs (e.g. thalidomide, which causes phocomelia) or environmental chemicals
- ionizing radiation (nuclear weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
This disorder is present at birth, however, it may not be understood until several years after birth. Acrodysostosis affects males and females in almost similar numbers. It is difficult to determine the frequency of acrodysostosis in the population as many cases of this disorder cannot be diagnosed properly.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
BRBNS is a venous malformation, formerly, though incorrectly, thought to be related to the hemangioma. It carries significant potential for serious bleeding. Lesions are most commonly found on the skin and in the small intestine and distal large bowel. It usually presents soon after birth.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
The syndrome was first described in 1943 and believed to be associated with racemose hemangiomatosis of the retina and arteriovenous malformations of the brain. It is non-hereditary and belongs to phakomatoses that do not have a cutaneous (pertaining to the skin) involvement. This syndrome can affect the retina, brain, skin, bones, kidney, muscles, and the gastrointestinal tract.
Bonnet–Dechaume–Blanc syndrome results mainly from arteriovenous malformations. These malformations are addressed previously in the article, under “Signs and Symptoms.” Due to lack of research, it is difficult to provide a specific mechanism for this disorder. However, a number of examinations, mentioned under “Diagnosis,” can be performed on subjects to investigate the disorder and severity of the AVMs.
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
A malformative syndrome (or malformation syndrome) is a recognizable pattern of congenital anomalies that are known or thought to be causally related (VIIth International Congress on Human Genetics).
Blue rubber bleb nevus syndrome (or "BRBNS", or "blue rubber bleb syndrome, or "blue rubber-bleb nevus", or "Bean syndrome") is a rare disorder that consists mainly of abnormal blood vessels affecting the gastrointestinal tract.
It was characterized by William Bean in 1958. BRBNS is caused by somatic mutations in the TEK (TIE2) gene.
Foix–Alajouanine syndrome is a disorder caused by an arteriovenous malformation of the spinal cord. The patients present with symptoms indicating spinal cord involvement (paralysis of arms and legs, numbness and loss of sensation and sphincter dysfunction), and pathological examination reveals disseminated nerve cell death in the spinal cord and abnormally dilated and tortuous vessels situated on the surface of the spinal cord. Surgical treatment can be tried in some cases. If surgical intervention is contraindicated, corticosteroids may be used.
The condition is named after Charles Foix and Théophile Alajouanine.
There are approximately three hundred known cases of Carpenter Syndrome in the United States. Only 1 in 1 million live births will result in an infant affected by Carpenter Syndrome (RN, 2007).
Carpenter Syndrome is an autosomal recessive disease which means both parents must have the faulty genes in order to pass the disease onto their children. Even if both parents possess the faulty gene there is still only a twenty five percent chance that they will produce a child affected by the syndrome. Their children who do not have the disease will still be carriers and possess the ability to pass the disease onto their offspring if their spouse is also a carrier of the particular gene.
RAPADILINO syndrome is an autosomal recessive disorder characterized by:
- RA: radial ray defect
- PA: patellar aplasia, arched or cleft palate
- DI: diarrhea, dislocated joints
- LI: little size (short stature), limb malformation
- NO: nose slender and normal intelligence.
It is more prevalent in Finland than elsewhere in the world.
It has been associated with the gene RECQL4. This is also associated with Rothmund-Thomson syndrome and Baller-Gerold syndrome.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
Acrodysostosis also known as Arkless-Graham syndrome or Maroteaux-Malamut syndrome is a rare congenital malformation syndrome which involves shortening of the interphalangeal joints of the hands and feet, intellectual disability in approximately 90% of affected children, and peculiar facies. Other common abnormalities include short head (as measured front to back), small broad upturned nose with flat nasal bridge, protruding jaw, increased bone age, intrauterine growth retardation, juvenile arthritis and short stature. Further abnormalities of the skin, genitals, teeth, and skeleton may occur.
Most reported cases have been sporadic, but it has been suggested that the condition might be genetically related i.e. in an autosomal dominant mode of transmission. Both males and females are affected. The disorder has been associated with the older age of parents at the time of conception.
A PRKAR1A mutation has been identified in acrodysostosis with hormone resistance.
Parkes Weber Syndrome (PWS) is a congenital disorder of the vascular system. It is an extremely rare disease with only 0.3% of the world's population known to have this syndrome. In 1907, a British dermatologist, Frederick Parkes Weber first described this syndrome and hence this disease was named Parkes Weber Syndrome. In the body, vascular system consists of arteries, veins and capillaries. When abnormalities such as: vascular malformation, capillary arteriovenous malformations (AVMs), arteriovenous fistulas (AVFs) and overgrowth of a limb occur together in combination and disturb the complex network of blood vessels of the vascular system -it is known as PWS. The capillary malformations and AVFs are known to be present from the birth. In some cases PWS is a genetic condition where RASA1 gene is mutated and displays autosomal dominant inheritance pattern. If PWS is genetic then most patients show multiple capillary malformations. Patients that do not have multiple capillary malformations most likely did not inherit PWS and do not have RASA1 mutations. In such cases the cause of PWS is often unknown and is sporadic as most cases often are.
Often times PWS is mixed up with Klippel–Trénaunay syndrome (KTS). These two diseases are similar but they are not quite the same. PWS occurs because of vascular malformation that may or may not be because of genetic mutations, where as Klippel-Trenaunay syndrome is a condition in which blood vessels and or lymph vessels do not form properly. PWS and KTS almost have the same symptoms except PWS patients are seen with both AVMs and AVFs occur together along with lymph hypertrophy.
Van der Woude syndrome (VDWS) and popliteal pterygium syndrome (PPS) are allelic variants of the same condition; that is, they are caused by different mutations of the same gene. PPS includes all the features of VDWS, plus popliteal pterygium, syngnathia, distinct toe/nail abnormality, syndactyly, and genito-urinary malformations.
The majority of patients with neurocutaneous melanosis are asymptomatic and therefore have a good prognosis with few complications. Most are not diagnosed, so definitive data in not available. For symptomatic patients, the prognosis is far worse. In patients without the presence of melanoma, more than 50% die within 3 years of displaying symptoms. While those with malignancy have a mortality rate of 77% with most patients displaying symptoms before the age of 2.
The presence of a Dandy-Walker malformation along with neurocutaneous melanosis, as occurs in 10% of symptomatic patients, further deteriorates prognosis. The median survival time for these patients is 6.5 months after becoming symptomatic.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
Cenani–Lenz syndactylism, also known as Cenani–Lenz syndrome or Cenani–syndactylism, is an autosomal recessive congenital malformation syndrome involving both upper and lower extremities.
Cenani–Lenz syndactylism is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
In a test of the theory that the locus associated with the disorder was at 15q13-q14, FMN1 and GREM1 were eliminated as candidates.
It is associated with "LRP4".