Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
SUCLA2 and RRM2B related forms result in deformities to the brain. A 2007 study based on 12 cases from the Faroe Islands (where there is a relatively high incidence due to a founder effect) suggested that the outcome is often poor with early lethality. More recent studies (2015) with 50 people with SUCLA2 mutations, with range of 16 different mutations, show a high variability in outcomes with a number of people surviving into adulthood (median survival was 20 years. There is significant evidence (p = 0.020) that people with missense mutations have longer survival rates, which might mean that some of the resulting protein has some residual enzyme activity.
RRM2B mutations have been reported in 16 infants with severe encephalomyopathic MDS that is associated with early-onset (neonatal or infantile), multi-organ presentation, and mortality during infancy.
The TK2 related myopathic form results in muscle weakness, rapidly progresses, leading to respiratory failure and death within a few years of onset. The most common cause of death is pulmonary infection. Only a few people have survived to late childhood and adolescence.
The life expectancy of people with A-T is highly variable. The average is approximately 25 years, but continues to improve with advances in care. The two most common causes of death are chronic lung disease (about one-third of cases) and cancer (about one-third of cases).
One family of 68 individuals over 5 generations was studied and the prevalence of disease among the family members suggests that it is indicative of dominant inheritance that is not sexually linked. This is supported by the fact that the disease failed to skip generations even in the absence of intermarriages and that disease incidence was independent of sex. The current findings suggest that the cause of the disease could be narrowed down to one enzymatic defect that is involved in the development of neuroectodermal tissue, however the exact molecular mechanisms are currently unknown. The other symptoms that arise such as bone defects and diabetes may be secondary to this enzymatic defect.
People with A-T have a highly increased incidence (approximately 25% lifetime risk) of cancers, particularly lymphomas and leukemia, but other cancers can occur. When possible, treatment should avoid the use of radiation therapy and chemotherapy drugs that work in a way that is similar to radiation therapy (radiomimetic drugs), as these are particularly toxic for people with A-T. The special problems of managing cancer are sufficiently complicated that treatment should be done only in academic oncology centers and after consultation with physicians who have specific expertise in A-T. Unfortunately, there is no way to predict which individuals will develop cancer. Because leukemia and lymphomas differ from solid tumors in not progressing from solitary to metastatic stages, there is less need to diagnose them early in their appearance. Surveillance for leukemia and lymphoma is thus not helpful, other than considering cancer as a diagnostic possibility whenever possible symptoms of cancer (e.g. persistent swollen lymph glands, unexplained fever) arise.
Women who are A-T carriers (who have one mutated copy of the ATM gene), have approximately a two-fold increased risk for the development of breast cancer compared to the general population. This includes all mothers of A-T children and some female relatives. Current consensus is that special screening tests are not helpful, but all women should have routine cancer surveillance.
Most patients begin to use a wheelchair for movement around age 30-40. Death usually occurs in their 60s, but some have been reported to live longer.
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
The exact pathophysiological mechanism of Flynn–Aird syndrome is unknown. However, several theories are in place with regards to the nature of this disease including the presence of a genetically defective enzyme involving a neuroectodermal tissue constituent. This explanation provides evidence for the late onset of the condition, the intricate findings, the varied nature of the disorder, as well as the genetic incidence. In addition, some aspects of the condition may be linked to a suppressing (S) gene due to the fact that only a small amount of stigmata appeared while the defects were still transmitted in the family studied. A suppressing gene down regulates the phenotypic expression of another gene, especially of a mutant gene. Other abnormalities may be due to endocrine system diseases.
Survival rates for those diagnosed with typical PKAN is 11.18 years with a standard deviation of 7.8 years.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
Kearns–Sayre syndrome occurs spontaneously in the majority of cases. In some cases it has been shown to be inherited through mitochondrial, autosomal dominant, or autosomal recessive inheritance. There is no predilection for race or sex, and there are no known risk factors. As of 1992 there were only 226 cases reported in published literature.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
The inheritance pattern is autosomal recessive. The disorder is caused by a mutation in the SGCG on chromosome 13. The mutation of the SACS gene causes the production of an unstable, poorly functioning SACSIN protein. It is unclear as to how this mutation affects the central nervous system (CNS) and skeletal muscles presenting in the signs and symptoms of ARSACS.
The journal of child neurology published a paper in 2012, Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF), discusses possible new methods to test for MERRF and other mitochondrial diseases, through a simple swabbing technique. This is a less invasive techniques which allows for an analysis of buccal mitochondrial DNA, and showed significant amounts of the common 5 kb and 7.4 kb mitochondrial DNA deletions, also detectable in blood. This study suggests that a buccal swab approach can be used to informatively examine mitochondrial dysfunction in children with seizures and may be applicable to screening mitochondrial disease with other clinical presentations.
Proceedings of the National Academy of Science of the United States of America published an article in 2007 which investigate the human mitochondrial tRNA (hmt-tRNA) mutations which are associated with mitochondrial myopathies. Since the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. All pathogenic mutants displayed pleiotropic phenotypes, with the exception of the G34A anticodon mutation, which solely affected aminoacylation.
This condition is very rare, only affecting one in two million people. It is more common in females than in males. There are several hundred cases in the United States, 25 known cases in the United Kingdom, and less than that in Australia and New Zealand.
First described in 1989, Costeff syndrome has been reported almost exclusively in individuals of Iraqi Jewish origin with only two exceptions, one of whom was a Turkish Kurdish, with the other being of Indian descent. Within the Iraqi Jewish population, the carrier frequency of the founder mutation is about 1/10, with the prevalence of Costeff syndrome itself estimated at anywhere between 1 in 400 and 1 in 10,000.
Extensive pathological and biochemical tests were performed, however the cause was found by studying a small population in which mutations in the eIF2B gene were found. No effective systemic studies have been conducted to determine the incidence around the world, but through the studies conducted thus far, it appears to be more prevalent in the white populations. VWM appears to have a lower number of cases in the Middle East, and Turkey has not yet had a reported case. Its prevalence is limited by the physician’s ability to identify the disease. As of 2006, more than 200 people have been identified with VWM, many of whom were originally diagnosed with an unclassified leukodystrophy.
As of 2015, there are approximately 70 known cases of Brown-Vialetto-Van-Laere syndrome worldwide. BVVL was first described in a Portuguese family, and has since been described in a number of ethnic groups. Reports have shown that BVVL infects females more than males at a rate of 5:1 respectively. However, males usually exhibit more severe symptoms, an earlier onset of deafness and a tendency to die earlier in life.
Non-progressive congenital ataxia (NPCA) is a non-progressive form of cerebellar ataxia which can occur with or without cerebellar hypoplasia.
The cause of MERRF disorder is due to the mitochondrial genomes mutation. This means that its a pathogenic variants in mtDNA and is transmitted by maternal inheritance. A four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation.This point mutation disrupts the mitochondrial gene for tRNA-Lys and so disrupts synthesis of proteins essential for oxidative phosphorylation.The remaining mutations only account for 10% of cases, and the remaining 10% of he patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
Many genes are involved. These genes include:
- MT-TK
- MT-TL1
- MT-TH
- MT-TS1
- MT-TS2
- MT-TF
It involves the following characteristics:
- progressive myoclonic epilepsy
- ""Ragged Red Fibers"" - clumps of diseased mitochondria accumulate in the subsarcolemmal region of the muscle fiber and appear as "Ragged Red Fibers" when muscle is stained with modified Gömöri trichrome stain .
There is currently no cure for MERRF.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.