Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many hypotheses have been raised for environmental factors contributing to the pathogenesis of ulcerative colitis. They include the following:
- Diet: as the colon is exposed to many dietary substances which may encourage inflammation, dietary factors have been hypothesized to play a role in the pathogenesis of both ulcerative colitis and Crohn's disease. Few studies have investigated such an association; one study showed no association of refined sugar on the prevalence of ulcerative colitis. High intake of unsaturated fat and vitamin B6 may enhance the risk of developing ulcerative colitis. Other identified dietary factors that may influence the development and/or relapse of the disease include meat protein and alcoholic beverages. Specifically, sulfur has been investigated as being involved in the etiology of ulcerative colitis, but this is controversial. Sulfur restricted diets have been investigated in patients with UC and animal models of the disease. The theory of sulfur as an etiological factor is related to the gut microbiota and mucosal sulfide detoxification in addition to the diet.
- Breastfeeding: Some reports of the protection of breastfeeding in the development of inflammatory bowel disease contradict each other. One Italian study showed a potential protective effect.
- One study of isotretinoin found a small increase in the rate of ulcerative colitis.
A genetic component to the etiology of ulcerative colitis can be hypothesized based on the following:
- Aggregation of ulcerative colitis in families.
- Identical twin concordance rate of 10% and dizygotic twin concordance rate of 3%
- Ethnic differences in incidence
- Genetic markers and linkages
Twelve regions of the genome may be linked to ulcerative colitis, including, in the order of their discovery, chromosomes 16, 12, 6, 14, 5, 19, 1, and 3, but none of these loci has been consistently shown to be at fault, suggesting that the disorder is influenced by multiple genes. For example, chromosome band 1p36 is one such region thought to be linked to inflammatory bowel disease.
Some of the putative regions encode transporter proteins such as OCTN1 and OCTN2. Other potential regions involve cell scaffolding proteins such as the MAGUK family. There may even be human leukocyte antigen associations at work. In fact, this linkage on chromosome 6 may be the most convincing and consistent of the genetic candidates.
Multiple autoimmune disorders have been recorded with the neurovisceral and cutaneous genetic porphyrias including ulcerative colitis, Crohn's disease, celiac disease, dermatitis herpetiformis, diabetes, systemic and discoid lupus, rheumatoid arthritis, ankylosing spondylitis, scleroderma, Sjogren's disease and scleritis. Physicians should be on high alert for porphyrias in families with autoimmune disorders and care must be taken with the use of potential porphyrinogenic drugs, including sulfasalazine.
GSE, particularly coeliac disease, increases the risk of cancers of specific types. There are two predominant cancers associated with coeliac disease, cancer of the esophagus and lymphoproliferative diseases such as gluten-sensitive enteropathy-associated T-cell lymphoma (EATL). For non-EATL cancers it is thought the mineralemias such as zinc and selenium may play a role in increasing risk. GSE associated cancers are invariably associated with advanced coeliac disease, however, in de-novo EATL, the cancer is frequently detected in advance of the coeliac diagnosis, also EATL is the most common neoplasm.
Squamous carcinoma of the esophagus is more prevalent in coeliac disease. The increased prevalence may be secondary to GERD that results from chronic delayed gastric emptying. Other studies implicate the malabsorption of vitamin A and zinc as a result of multi-vitamin and mineral deficiencies seen in Coeliac disease.
The causes of diverticulitis are poorly understood, with approximately 40 percent due to genes and 60 percent due to environmental factors. Conditions that increase the risk of developing diverticulitis include arterial hypertension and immunosuppression. Obesity is another risk factor.
It is unclear what role dietary fibre plays in diverticulitis. It is often stated that a diet low in fibre is a risk factor; however, the evidence to support this is unclear. There is no evidence to suggest that the avoidance of nuts and seeds prevents the progression of diverticulosis to an acute case of diverticulitis. It appears in fact that a higher intake of nuts and corn could help to avoid diverticulitis in adult males.
There are seven classes of medications associated with acute pancreatitis: statins, ACE inhibitors, oral contraceptives/hormone replacement therapy (HRT), diuretics, antiretroviral therapy, valproic acid, and oral hypoglycemic agents. Mechanisms of these drugs causing panreatitis are not known exactly; but it is possible that statins has direct toxic effect on the pancreas or through the long term accumulation of toxic metabolites. Meanwhile, ACE inhibitors causes angioedema of the pancreas through the accumulation of bradykinin. Oral contraceptives/HRT causes arterial thrombosis of the pancreas through the accumulation of fat (hypertriglyceridemia). Diuretics such as furosemide has direct toxic effect on the pancreas. Meanwhile, thiazide diuretics causes hypertriglyceridemia and hypercalcemia, where the latter is the risk factor for pancreatic stones. HIV infection itself can cause a person to more likely to get pancreatitis. Meanwhile, antiretroviral drugs may cause metabolic disturbances such as hyperglycemia and hypercholesterolemia, which predisposes to pancreatitis. Valproic acid may have direct toxic effect on the pancreas. There are various oral hypoglycemic agents that contributes to pancreatitis including metformin. But, glucagon-like peptide-1 (GLP-1) is more strongly associated with pancreatits by promoting inflammation.
Atypical antipsychotics such as clozapine, risperidone, and olanzapine can also cause pancreatitis.
Most patients will develop flat, brownish spots (melanotic macules) on the skin, especially on the lips and oral mucosa, during the first year of life, and a patient’s first bowel obstruction due to intussusception usually occurs between the ages of six and 18 years. The cumulative lifetime cancer risk begins to rise in middle age. Cumulative risks by age 70 for all cancers, gastrointestinal (GI) cancers, and pancreatic cancer are 85%, 57%, and 11%, respectively.
A 2011 Dutch study followed 133 patients for 14 years. The cumulative risk for cancer was 40% and 76% at ages 40 and 70, respectively. 42 (32%) of the patients died during the study, of which 28 (67%) were cancer related. They died at a median age of 45. Mortality was increased compared with the general population.
A family with sinonasal polyposis were followed up for 28 years. Two cases of sinonasal type adenocarcinoma developed. This is a rare cancer. This report suggested that follow up of sinus polyps in this syndrome may be indicated.
A number of infectious agents have been recognized as causes of pancreatitis including:
- Viruses
- Coxsackie virus
- Cytomegalovirus
- Hepatitis B
- Herpes simplex virus
- Mumps
- Varicella-zoster virus
- Bacteria
- Legionella
- Leptospira
- Mycoplasma
- Salmonella
- Fungi
- Aspergillus
- Parasites
- Ascaris
- Cryptosporidium
- Toxoplasma
Blau Syndrome is an autosomal dominant genetic inflammatory disorder which affects the skin, eyes, and joints. It is caused by a mutation in the NOD2 (CARD15) gene. Symptoms usually begin before the age of 4, and the disease manifests as early onset cutaneous sarcoidosis, granulomatous arthritis, and uveitis.
The prognosis for non-ischemic cases of SBO is good with mortality rates of 3–5%, while prognosis for SBO with ischemia is fair with mortality rates as high as 30%.
Cases of SBO related to cancer are more complicated and require additional intervention to address the malignancy, recurrence, and metastasis, and thus are associated with poorer prognosis.
All cases of abdominal surgical intervention are associated with increased risk of future small-bowel obstructions. Statistics from U.S. healthcare report 18.1% re-admittance rate within 30 days for patients who undergo SBO surgery. More than 90% of patients also form adhesions after major abdominal surgery.
Common consequences of these adhesions include small-bowel obstruction, chronic abdominal pain, pelvic pain, and infertility.
In 1998, a gene was found to be associated with the mutation. On chromosome 19, the gene known as "STK11" ("LKB1") is a possible tumor suppressor gene. It is inherited in an autosomal dominant pattern, which means that anyone who has PJS has a 50% chance of passing the disease on to their offspring.
Peutz–Jeghers syndrome is rare and studies typically include only a small number of patients. Even in those few studies that do contain a large number of patients, the quality of the evidence is limited due to pooling patients from many centers, selection bias (only patients with health problems coming from treatment are included), and historical bias (the patients reported are from a time before advances in the diagnosis of treatment of Peutz–Jeghers syndrome were made). Probably due to this limited evidence base, cancer risk estimates for Peutz–Jeghers syndrome vary from study to study.
Causes of large bowel obstruction include:
- Neoplasms / cancer
- Diverticulitis / Diverticulosis
- Hernias
- Inflammatory bowel disease
- Colonic volvulus (sigmoid, caecal, transverse colon)
- Adhesions
- Constipation
- Fecal impaction
- Fecaloma
- Colon atresia
- Intestinal pseudoobstruction
- Endometriosis
- Narcotic induced (especially with the large doses given to cancer or palliative care patients)
LRBA deficiency presents as a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. Predominant clinical problems include idiopathic thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), and an autoimmune enteropathy. Before the discovery of these gene mutations, patients were diagnosed with common variable immune deficiency (CVID), which is characterized by low antibody levels and recurrent infections. Infections mostly affect the respiratory tract, as many patients suffer from chronic lung disease, pneumonias, and bronchiectasis. Lymphocytic interstitial lung disease (ILD) is also observed, which complicates breathing and leads to impairment of lung function and mortality. Infections can also occur at other sites, such as the eyes, skin and gastrointestinal tract. Many patients suffer from chronic diarrhea and inflammatory bowel disease. Other clinical features can include hepatosplenomegaly, reoccurring warts, growth retardation, allergic dermatitis, and arthritis. Notably, LRBA deficiency has also been associated with type 1 diabetes mellitus. There is significant clinical phenotypic overlap with disease caused by CTLA4 haploinsufficiency. Since LRBA loss results in a loss of CTLA4 protein, the immune dysregulation syndrome of LRBA deficient patients can be attributed to the secondary loss of CTLA4. Because the predominant features of the disease include autoantibody-mediated disease (AIHA, ITP), Treg defects (resembling those found in CTLA4 haploinsufficient patients), autoimmune infiltration (of non-lymphoid organs, also resembling that found in CTLA4 haploinsufficient patients), and enteropathy, the disease has been termed LATAIE for LRBA deficiency with autoantibodies, Treg defects, autoimmune infiltration, and enteropathy.
LRBA deficiency is a rare genetic disorder of the immune system. This disorder is caused by a mutation in the gene "LRBA". LRBA stands for “Lipopolysaccharide (LPS)-responsive vesicle trafficking, beach- and anchor-containing” gene. This condition is characterized by autoimmunity, lymphoproliferation, and immune deficiency. It was first described by Gabriela Lopez-Herrera from University College London in 2012. Investigators in the laboratory of Dr. Michael Lenardo at National Institute of Allergy and Infectious Diseases, the National Institutes of Health and Dr. Michael Jordan at Cincinnati Children’s Hospital Medical Center later described this condition and therapy in 2015.
In 1985 Edward Blau, a pediatrician in Marshfield, Wisconsin, reported a family that over four generations had granulomatous inflammation of the skin, eyes and joints. The condition was transmitted as an autosomal dominant trait. In the same year Jabs et al. reported a family that over two generations had granulomatous synovitis, uveitis and cranial neuropathies. The condition was transmitted in an autosomal dominant fashion. In 1981 Malleson et al. reported a family that had autosomal dominant synovitis, camptodactyly, and iridocyclitis. One member died of granulomatous arteritis of the heart and aorta. In 1982 Rotenstein reported a family with granulomatous arteritis, rash, iritis, and arthritis transmitted as an autosomal dominant trait over three generations. Then in 1990 Pastores et al. reported a kindred with a phenotype very similar to what Blau described and suggested that the condition be called Blau Syndrome (BS). They also pointed out the similarities in the families noted above to BS but also pointed out the significant differences in the phenotypes.
In 1996 Tromp et al. conducted a genome wide search using affected and non affected members of the original family. A marker D16S298gave a maximum LOD score of 3.75 and put the BS susceptibility locus within the 16p12-q21 interval. Hugot et al. found a susceptibility locus for Crohn disease a granulomatous inflammation of the bowel on chromosome 16 close to the locus for BS. Based on the above information Blau suggested in 1998 that the genetic defect in BS and Crohn Disease might be the same or similar.
Finally in 2001 Miceli-Richard et al. found the defect in BS to be in the nucleotide-binding domain of CARD15/NOD2. They commented in their article that mutations in CARD15 had also been found in Crohn's Disease. Confirmation of the defect in BS being in the CARD15 gene was made by Wang et al. in 2002 using the BS family and others. With that information the diagnosis of BS was not only determined by phenotype but now by genotype.
Early onset sarcoidosis is BS without a family history, BS has been diagnosed in patients who have not only the classic triad but granuloma in multiple organs. Treatment has included the usual anti inflammatory drugs such as adrenal glucocorticoids, anti-metabolites and also biological agents such as anti-TNF and infliximab all with varying degrees of success.
The elucidation that the gene defect in BS involves the CARD15/NOD2 gene has stimulated many investigators, to define how this gene operates as part of the innate immune system, that responds to bacterial polysaccharides, such as muramyl dipeptide, to induce signaling pathways that induce cytokine responses, and protect the organism. In BS the genetic defect seems to lead to over expression, and poor control of the inflammatory response leading to widespread granulomatous, inflammation and tissue damage This reference provides an excellent review of the clinical aspects of BS, and the presumed pathogenetic mechanisms brought about by the gene defect.
What stimulus activates the aberrant immune response, and what would then lead to the discovery of more precise therapy, and the relationship to the specific gene defect and phenotype, require further research.
- List of cutaneous conditions
The incidence of the mutation is between 1 in 10,000 and 1 in 15,000 births.
By age 35 years, 95% of individuals with FAP (>100 adenomas) have polyps. Without colectomy, colon cancer is virtually inevitable. The mean age of colon cancer in untreated individuals is 39 years (range 34–43 years).
Attentuated FAP arises when APC is defective but still somewhat functional. As a result, it retains part of its ability to suppress polyps. Therefore, attenuated FAP manifests as colorectal cancer unusually late (age 40–70, average=55), and typically with few, or at least far fewer polyps (typically 30), than the more usual version of FAP, at an age when FAP is no longer considered much of a likelihood or risk according to usual FAP epidemiology.
An enterocutaneous fistula (ECF) is an abnormal communication between the small or large bowel and the skin that allows the contents of the stomach or intestines to leak through an opening in the skin.
The mnemonic FRIENDS can be used to memorize characteristics which impede the closure of ECF.
F Foreign body
R Radiation
I Infection or Inflammatory bowel disease
E Epithelialization
N Neoplasm
D Distal obstruction
S Short tract (<2 cm)
TRIANGLE disease is a rare genetic disorder of the immune system. TRIANGLE stands for “TPPII-related immunodeficiency, autoimmunity, and neurodevelopmental delay with impaired glycolysis and lysosomal expansion” where "TPP2" is the causative gene. This disease manifests as recurrent infection, autoimmunity, and neurodevelopmental delay. TRIANGLE disease was first described in a collaborative study by Dr. Helen C. Su from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Dr. Sophie Hambleton from the University of Newcastle and their collaborators in 2014. The disease was also described by the group of Ehl et al.
Once a diagnosis is made, the treatment is based on an individual’s clinical condition and may include standard management for autoimmunity and immunodeficiency. Hematopoietic stem cell transplantation has cured the immune abnormalities in one TRIANGLE patient, although the neurodevelopmental delay would likely remain. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
The six-week period after pregnancy is called the postpartum stage. During this time, women are at increased risk of being constipated. Multiple studies estimate the prevalence of constipation to be around 25% during the first 3 months. Constipation can cause discomfort for women, as they are still recovering from the delivery process especially if they have had a perineal tear or underwent an episiotomy. Risk factors that increase the risk of constipation in this population include:
- Damage to the levator ani muscles (pelvic floor muscles) during childbirth
- Forceps-assisted delivery
- Lengthy second stage of labor
- Delivering a large child
- Hemorrhoids
Hemorrhoids are common in pregnancy and also may get exacerbated when constipated. Anything that can cause pain with stooling (hemorrhoids, perineal tear, episiotomy) can lead to constipation because patients may withhold from having a bowel movement so as to avoid pain.
The pelvic floor muscles play an important role in helping pass a bowel movement. Injury to those muscles by some of the above risk factors (examples- delivering a large child, lengthy second stage of labor, forceps delivery) can result in constipation. Women sometimes get enemas during labor that can also alter bowel movements in the days after having given birth. However, there is insufficient evidence to make conclusions about the effectiveness and safety of laxatives in this group of people.
Prognosis strongly depends on which subtype of disease it is. Some are deadly in infancy but most are late onset and mostly manageable.
Underlying causes include gastric ulcers, duodenal ulcers, appendicitis, gastrointestinal cancer, diverticulitis, inflammatory bowel disease, superior mesenteric artery syndrome, trauma and ascariasis. Typhoid fever, non-steroidal anti-inflammatory drugs, ingestion of corrosives may also be responsible.