Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Smoking increases the risk of developing gastric cancer significantly, from 40% increased risk for current smokers to 82% increase for heavy smokers. Gastric cancers due to smoking mostly occur in the upper part of the stomach near the esophagus. Some studies show increased risk with alcohol consumption as well.
Dietary factors are not proven causes, but some foods including smoked foods, salt and salt-rich foods, red meat, processed meat, pickled vegetables, and bracken are associated with a higher risk of stomach cancer. Nitrates and nitrites in cured meats can be converted by certain bacteria, including "H. pylori", into compounds that have been found to cause stomach cancer in animals.
Fresh fruit and vegetable intake, citrus fruit intake, and antioxidant intake are associated with a lower risk of stomach cancer. A Mediterranean diet is associated with lower rates of stomach cancer, as is regular aspirin use.
Obesity is a physical risk factor that has been found to increase the risk of gastric adenocarcinoma by contributing to the development of gastroesophageal reflux disease (GERD). The exact mechanism by which obesity causes GERD is not completely known. Studies hypothesize that increased dietary fat leading to increased pressure on the stomach and the lower esophageal sphincter, due to excess adipose tissue, could play a role, yet no statistically significant data has been collected. However, the risk of gastric cardia adenocarcinoma, with GERD present, has been found to increase more than 2 times for an obese person. There is a correlation between iodine deficiency and gastric cancer.
The two major risk factors for esophageal squamous-cell carcinoma are tobacco (smoking or chewing) and alcohol. The combination of tobacco and alcohol has a strong synergistic effect. Some data suggest that about half of all cases are due to tobacco and about one-third to alcohol, while over three-quarters of the cases in men are due to the combination of smoking and heavy drinking. Risks associated with alcohol appear to be linked to its aldehyde metabolite and to mutations in certain related enzymes. Such metabolic variants are relatively common in Asia.
Other relevant risk factors include regular consumption of very hot drinks (over 65 °C)(149 Fahrenheit) and ingestion of caustic substances. High levels of dietary exposure to nitrosamines (chemical compounds found both in tobacco smoke and certain foodstuffs) also appear to be a relevant risk factor. Unfavorable dietary patterns seem to involve exposure to nitrosamines through processed and barbecued meats, pickled vegetables, etc., and a low intake of fresh foods. Other associated factors include nutritional deficiencies, low socioeconomic status, and poor oral hygiene. Chewing betel nut (areca) is an important risk factor in Asia.
Physical trauma may increase the risk. This may include the drinking of very hot drinks.
Little research is conducted on these cancers due to their relative rarity when compared to the more common colorectal cancers. APC-min mice which carry a gene deficiency corresponding to that of humans with FAP also go on to develop small intestinal tumors, though humans do not.
Male predominance is particularly strong in this type of esophageal cancer, which occurs about 7 to 10 times more frequently in men. This imbalance may be related to the characteristics and interactions of other known risk factors, including acid reflux and obesity.
The long-term erosive effects of acid reflux (an extremely common condition, also known as gastroesophageal reflux disease or GERD) have been strongly linked to this type of cancer. Longstanding GERD can induce a change of cell type in the lower portion of the esophagus in response to erosion of its squamous lining. This phenomenon, known as Barrett's esophagus, seems to appear about 20 years later in women than in men, maybe due to hormonal factors. Having symptomatic GERD or bile reflux makes Barrett's esophagus more likely, which in turn raises the risk of further changes that can ultimately lead to adenocarcinoma. The risk of developing adenocarcinoma in the presence of Barrett's esophagus is unclear, and may in the past have been overestimated.
Being obese or overweight both appear to be associated with increased risk. The association with obesity seems to be the strongest of any type of obesity-related cancer, though the reasons for this remain unclear. Abdominal obesity seems to be of particular relevance, given the closeness of its association with this type of cancer, as well as with both GERD and Barrett's esophagus. This type of obesity is characteristic of men. Physiologically, it stimulates GERD and also has other chronic inflammatory effects.
"Helicobacter pylori" infection (a common occurrence thought to have affected over half of the world's population) is not a risk factor for esophageal adenocarcinoma and actually appears to be protective. Despite being a cause of GERD and a risk factor for gastric cancer, the infection seems to be associated with a reduced risk of esophageal adenocarcinoma of as much as 50%. The biological explanation for a protective effect is somewhat unclear. One explanation is that some strains of "H. pylori" reduce stomach acid, thereby reducing damage by GERD. Decreasing rates of "H. pylori" infection in Western populations over recent decades, which have been linked to better hygiene and increased refrigeration of food, could be a factor in the concurrent increase in esophageal adenocarcinoma.
Female hormones may also have a protective effect, as EAC is not only much less common in women but develops later in life, by an average of 20 years. Although studies of many reproductive factors have not produced a clear picture, risk seems to decline for the mother in line with prolonged periods of breastfeeding.
Tobacco smoking increases risk, but the effect in esophageal adenocarcinoma is slight compared to that in squamous cell carcinoma, and alcohol has not been demonstrated to be a cause.
Risk factors for small intestine cancer include:
- Crohn's disease
- Celiac disease
- Radiation exposure
- Hereditary gastrointestinal cancer syndromes: familial adenomatous polyposis, hereditary nonpolyposis colorectal cancer, Peutz-Jeghers syndrome
- Males are 25% more likely to develop the disease
Benign tumours and conditions that may be mistaken for cancer of the small bowel:
- Hamartoma
- Tuberculosis
Cancer of the stomach, also called gastric cancer, is the fourth-most-common type of cancer and the second-highest cause of cancer death globally. Eastern Asia (China, Japan, Korea, Mongolia) is a high-risk area for gastric cancer, and North America, Australia, New Zealand and western and northern Africa are areas with low risk. The most common type of gastric cancer is adenocarcinoma, which causes about 750,000 deaths each year. Important factors that may contribute to the development of gastric cancer include diet, smoking and alcohol consumption, genetic aspects (including a number of heritable syndromes) and infections (for example, "Helicobacter pylori" or Epstein-Barr virus) and pernicious anemia. Chemotherapy improves survival compared to best supportive care, however the optimal regimen is unclear.
Risk factors for pancreatic adenocarcinoma include:
- Age, gender, and ethnicity; the risk of developing pancreatic cancer increases with age. Most cases occur after age 65, while cases before age 40 are uncommon. The disease is slightly more common in men than women, and in the United States is over 1.5 times more common in African Americans, though incidence in Africa is low.
- Cigarette smoking is the best-established avoidable risk factor for pancreatic cancer, approximately doubling risk among long-term smokers, the risk increasing with the number of cigarettes smoked and the years of smoking. The risk declines slowly after smoking cessation, taking some 20 years to return to almost that of non-smokers.
- Obesity; a BMI greater than 35 increases relative risk by about half.
- Family history; 5–10% of pancreatic cancer cases have an inherited component, where people have a family history of pancreatic cancer. The risk escalates greatly if more than one first-degree relative had the disease, and more modestly if they developed it before the age of 50. Most of the genes involved have not been identified. Hereditary pancreatitis gives a greatly increased lifetime risk of pancreatic cancer of 30–40% to the age of 70. Screening for early pancreatic cancer may be offered to individuals with hereditary pancreatitis on a research basis. Some people may choose to have their pancreas surgically removed to prevent cancer developing in the future.
- Chronic pancreatitis appears to almost triple risk, and as with diabetes, new-onset pancreatitis may be a symptom of a tumor. The risk of pancreatic cancer in individuals with familial pancreatitis is particularly high.
- Diabetes mellitus is a risk factor for pancreatic cancer and (as noted in the Signs and symptoms section) new-onset diabetes may also be an early sign of the disease. People who have been diagnosed with Type 2 diabetes for longer than ten years may have a 50% increased risk, as compared with non-diabetics.
- Specific types of food (as distinct from obesity) have not been clearly shown to increase the risk of pancreatic cancer. Dietary factors for which there is some evidence of slightly increased risk include processed meat, red meat, and meat cooked at very high temperatures (e.g. by frying, broiling or barbecuing).
Pancreatic cancer is the fifth-most-common cause of cancer deaths in the United States, and the seventh most common in Europe. In 2008, globally there were 280,000 new cases of pancreatic cancer reported and 265,000 deaths. These cancers are classified as endocrine or nonendocrine tumors. The most common is ductal adenocarcinoma. The most significant risk factors for pancreatic cancer are advanced age (over 60) and smoking. Chronic pancreatitis, diabetes or other conditions may also be involved in their development. Early pancreatic cancer does not tend to result in any symptom, but when a tumor is advanced, a patient may experience severe pain in the upper abdomen, possibly radiating to the back. Another symptom might be jaundice, a yellowing of the skin and eyes.
Pancreatic cancer has a poor prognosis, with a five-year survival rate of less than 5%. By the time the cancer is diagnosed, it is usually at an advanced, inoperable stage. Only one in about fifteen to twenty patients is curative surgery attempted. Pancreatic cancer tends to be aggressive, and it resists radiotherapy and chemotherapy.
Drinking alcohol excessively is a major cause of chronic pancreatitis, which in turn predisposes to pancreatic cancer. However, considerable research has failed to firmly establish alcohol consumption as a direct risk factor for pancreatic cancer. Overall, the association is consistently weak and the majority of studies have found no association, with smoking a strong confounding factor. The evidence is stronger for a link with heavy drinking, of at least six drinks per day.
Alcohol is a risk factor for breast cancer in women.
A woman drinking an average of two units of alcohol per day has an 8% higher risk of developing breast cancer than a woman who drinks an average of one unit of alcohol per day. A study concluded that for every additional drink regularly consumed per day, the incidence of breast cancer increases by 11 per 1000. Approximately 6% (between 3.2% and 8.8%) of breast cancers reported in the UK each year could be prevented if drinking was reduced to a very low level (i.e. less than 1 unit/week). Moderate to heavy consumption of alcoholic beverages (at least three to four drinks per week) is associated with a 1.3-fold increased risk of the recurrence of breast cancer. Further, consumption of alcohol at any quantity is associated with significantly increased risk of relapse in breast cancer survivors.
Drinking may be a cause of earlier onset of colorectal cancer. The evidence that alcohol is a cause of bowel cancer is convincing in men and probable in women.
The National Institutes of Health, the National Cancer Institute, Cancer Research, the American Cancer Society, the Mayo Clinic, and the Colorectal Cancer Coalition, American Society of Clinical Oncology and the Memorial Sloan-Kettering Cancer Center list alcohol as a risk factor.
A WCRF panel report finds the evidence "convincing" that alcoholic drinks increase the risk of colorectal cancer in men at consumption levels above 30 grams of absolute alcohol daily. The National Cancer Institute states, "Heavy alcohol use may also increase the risk of colorectal cancer"
A 2011 meta-analysis found that alcohol consumption was associated with an increased risk of colorectal cancer.
Worldwide approximately 18% of cancer deaths are related to infectious diseases. This proportion ranges from a high of 25% in Africa to less than 10% in the developed world. Viruses are the usual infectious agents that cause cancer but cancer bacteria and parasites may also play a role.
"Oncovirus"es (viruses that can cause cancer) include human papillomavirus (cervical cancer), Epstein–Barr virus (B-cell lymphoproliferative disease and nasopharyngeal carcinoma), Kaposi's sarcoma herpesvirus (Kaposi's sarcoma and primary effusion lymphomas), hepatitis B and hepatitis C viruses (hepatocellular carcinoma) and human T-cell leukemia virus-1 (T-cell leukemias). Bacterial infection may also increase the risk of cancer, as seen in "Helicobacter pylori"-induced gastric carcinoma. Parasitic infections associated with cancer include "Schistosoma haematobium" (squamous cell carcinoma of the bladder) and the liver flukes, "Opisthorchis viverrini" and "Clonorchis sinensis" (cholangiocarcinoma).
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation, mostly from sunlight. Sources of ionizing radiation include medical imaging and radon gas.
Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Radiation is a more potent source of cancer when combined with other cancer-causing agents, such as radon plus tobacco smoke. Radiation can cause cancer in most parts of the body, in all animals and at any age. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect.
Medical use of ionizing radiation is a small but growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging.
Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between mobile phone radiation and cancer risk.
Digestive system neoplasms are tumors which affect the digestive system. Types include:
- esophageal cancer
- gastric cancer
- small intestinal cancer
- colorectal cancer
- anal cancer
The cancerous mass tends to block food from getting to the small intestine. If food cannot get to the intestines, it will cause pain, acid reflux, and weight loss because the food cannot get to where it is supposed to be processed and absorbed by the body.
Patients with duodenal cancer may experience abdominal pain, weight loss, nausea, vomiting, and chronic GI bleeding.
The median age at diagnosis is 38 years. Women are at higher risk for developing breast cancer.
Barrett's esophagus is a premalignant condition. Its malignant sequela, oesophagogastric junctional adenocarcinoma, has a mortality rate of over 85%. The risk of developing esophageal adenocarcinoma in people who have Barrett's esophagus has been estimated to be 6–7 per 1000 person-years, however a cohort study of 11,028 patients from Denmark published in 2011 showed an incidence of only 1.2 per 1000 person-years (5.1 per 1000 person-years in patients with dysplasia, 1.0 per 1000 person-years in patients without dysplasia). The relative risk of esophageal adenocarcinoma is approximately 10 in those with Barret's esophagus, compared to the general population. Most patients with esophageal carcinoma survive less than one year.
Duodenal cancer is a cancer in the beginning section of the small intestine. It is relatively rare compared to gastric cancer and colorectal cancer. Its histology is usually adenocarcinoma.
Familial adenomatous polyposis (FAP), Gardner syndrome, Lynch syndrome, Muir–Torre syndrome, celiac disease, Peutz–Jeghers syndrome, Crohn's disease and juvenile polyposis syndrome are risk factors for developing this cancer.
The duodenum is the first part of the small intestine. It is located between the stomach and the jejunum. After foods combine with stomach acid, they descend into the duodenum where they mix with bile from the gallbladder and digestive juices from the pancreas.
The incidence in the United States among Caucasian men is eight times the rate among Caucasian women and five times greater than African American men. Overall, the male to female ratio of Barrett's esophagus is 10:1. Several studies have estimated the prevalence of Barrett's esophagus in the general population to be 1.3% to 1.6% in two European populations (Italian and Swedish), and 3.6% in a Korean population.
Oesophagogastric junctional adenocarcinoma is a cancer of the lower part of the oesophagus, often linked to a Barrett's oesophagus.
The incidence of oesophagogastric junctional adenocarcinoma is rising rapidly in western countries, in contrast to the declining frequency of distal gastric adenocarcinoma. Treatment options for adenocarcinomas involving the oesophagogastric junction are limited and the overall prognosis is extremely poor.
OGJ adenocarcinoma is a highly mutated and heterogeneous disease. Microsatellite instability (MSI) can be observed and coincides with an elevated number of somatic mutations. Potentially actionable coding mutations have been identified in 67 genes, including those in CR2, HGF, FGFR4 and ESRRB. Numerous genes harbouring somatic coding mutations and copy number changes in the microsatellite stable (MSS) OGJA are also known to be altered with similar predicted functional consequence in other tumour types. TP53, SYNE1, and ARID1A are among the most frequently mutated genes.
Primary signet ring cell carcinoma of the colon and rectum (PSRCCR) is rare, with a reported incidence of less than 1 percent. It has a poor prognosis because symptoms often develop late and it is usually diagnosed at an advanced stage. Five-year survival rates in previous studies ranged from nine to 30 percent. Average survival was between 20 and 45 months. It tends to affect younger adults with higher likelihood of lymphovascular invasion. It is worth noting that the overall survival rate of patients with SRCC was significantly poorer than that of patients with mucinous or poorly differentiated adenocarcinoma.
In advanced gastric cancers, the prognosis for patients with the SRCCs was significantly worse than for the other histological types, which can be explained by the finding that advanced SRCC gastric cancers have a larger tumor size, more lymph node metastasis, a deeper invasive depth and more Borrmann type 4 lesions than other types.
Linitis plastica, also known as Brinton's disease or leather bottle stomach, is a morphological variant of diffuse (or infiltrating) stomach cancer.
Causes of linitis plastica could be lye ingestion or metastatic infiltration of the stomach, particularly breast and lung carcinoma. It is not associated with H. pylori infection or chronic gastritis. The risk factors are undefined, except for rare inherited mutations in E-cadherin, which are found in about 50% of diffuse-type gastric carcinomas.
Surgical removal of the stomach (gastrectomy) is typically recommended after for people after 20 years of age, and before 40 years of age.