Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
The mortality rate ranges from 3–7% in a mean follow up period of 8.5 to 9.7 years. Death is often related to accidents.
Incidence is around 1:3200 to 1:3500 of live births. Statistically, boys are more likely to be affected than girls at a ratio of around 1.3:1. In 9 out of every 10 children affected, the spasms appear for the first time between the third and the twelfth month of age. In rarer cases, spasms may occur in the first two months or during the second to fourth year of age.
LGS is seen in approximately 4% of children with epilepsy, and is more common in males than in females. Usual onset is between the ages of three and five. Children can have no neurological problems prior diagnosis, or have other forms of epilepsy. West syndrome is diagnosed in 20% of patients before it evolves into LGS at about 2 years old.
The National Institute of Health Office and Rare Disease Research characterizes PCDH19 gene-related epilepsy as a rare disorder. Rare diseases, by definition, are diseases that affect fewer than 200,000 people in the United States. Since the mutation associated with PCDH19 gene-related epilepsy was only recently identified in 2008, the true incidence of the disease is generally unknown.
Although formal epidemiologic data is not available, results from diagnostic screening indicates that approximately 1 out of 10 girls who have seizure onset before five years of age may have PCDH19 gene mutations. Additionally, PCDH19 screening of several large cohorts of females with early onset febrile-related epilepsy has resulted in a rate of approximately 10% of mutation-positive individuals.
No single cause of OS has been identified. In most cases, there is severe atrophy of both hemispheres of the brain. Less often, the root of the disorder is an underlying metabolic syndrome. Although it was initially published that no genetic connection had been established, several genes have since associated with Ohtahara syndrome. It can be associated with mutations in "ARX", "CDKL5", "SLC25A22", "STXBP1", "SPTAN1", "KCNQ2", "ARHGEF9", "PCDH19", "PNKP", "SCN2A", "PLCB1", "SCN8A", and likely others.
Treatment outlook is poor. Anticonvulsant drugs and glucocorticoid steroids may be used to try to control the seizures, but their effectiveness is limited. Most therapies are related to symptoms and day-to-day living.
Ohtahara syndrome (OS), also known as early infantile epileptic encephalopathy with burst-suppression (EIEE), is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe mental retardation. No single cause has been identified, although in many cases structural brain damage is present.
The cause of FIRES is not known. It does not happen twice in the same family, but the medical community does not know if it is genetic. It happens in boys more than girls. After the initial status, life expectancy is not affected directly. Issues such as overdose of medications or infections at a food tube site are examples of things that would be secondary to the status.
Panayiotopoulos syndrome probably affects 13% of children aged 3 to 6 years who have had 1 or more afebrile seizures and 6% of such children in the 1- to 15-year age group. All races and both sexes are affected.
Panayiotopoulos syndrome is remarkably benign in terms of its evolution. The risk of developing epilepsy in adult life is probably no more than of the general population. Most patients have one or 2-5 seizures. Only a third of patients may have more than 5 seizures, and these may be frequent, but outcome is again favorable. However, one fifth of patients may develop other types of infrequent, usually rolandic seizures during childhood and early teens. These are also age-related and remit before the age of 16 years. Atypical evolutions with absences and drop attacks are exceptional. Children with pre-existing neurobehavioral disorders tend to be pharmacoresistant and have frequent seizures though these also remit with age.
Formal neuropsychological assessment of children with Panayiotopoulos syndrome showed that these children have normal IQ and they are not on any significant risk of developing cognitive and behavioural aberrations, which when they occur they are usually mild and reversible. Prognosis of cognitive function is good even for patients with atypical evolutions.
However, though Panayiotopoulos syndrome is benign in terms of its evolution, autonomic seizures are potentially life-threatening in the rare context of cardiorespiratory arrest.
A 2008 study, found a relationship between the PCDH19 gene and early onset female seizures, with subsequent studies confirming the relationship.
PCDH19 gene-related epilepsy can arise as a single case in a family, due to a de novo error in cell replication, or it can be inherited. In a large series of cases in which inheritance was determined, half of the PCDH19 mutations occurred de novo, and half were inherited from fathers in good health, and who had no evidence of seizures or cognitive disorders.
Men and women can transmit the PCDH19 mutation, although females, but not males, usually, but not always, exhibit symptoms, which can be very mild. Females with a mutation have a 50% chance of having children who are carriers. Men have a 100% chance of transmitting the mutation to a daughter and 0% chance to a son.
Although males do not generally exhibit PCDH19 gene-related history such as cluster seizures, in a study involving four families with PCDH19 gene mutations, 5 of the fathers had obsessive and controlling tendencies. The linkage of chromosome Xq22.1 to PCDH19 gene-related epilepsy in females was confirmed in all of the families.
The inheritance pattern is very unusual, in that men that carry the PCDH19 gene mutation on their only X-chromosome are typically unaffected, except in rare instances of somatic mosaicism. Alternatively, approximately 90% of women, who have the mutation on one of their two X-chromosomes, exhibit symptoms. It has been suggested that the greater occurrence of PCDH19-epilepsy in females may relate to X-chromosome inactivation, through a hypothesized mechanism termed ‘‘cellular interference’’.
A 2011 study found instances where patients had PCDH19 mutation, but their parents did not. They found that "gonadal mosaicism” of a PCDH19 mutation in a parent is an important molecular mechanism associated with the inheritance of a mutated PCDH19 gene.
Seizures in cats are caused by various onsets. Cats can have reactive, primary (idiopathic) or secondary seizures. Idiopathic seizures are not as common in cats as in dogs however a recent study conducted showed that of 91 feline seizures, 25% were suspected to have idiopathic epilepsy. In the same group of 91 cats, 50% were secondary seizures and 20% reactive.
Benign familial infantile epilepsy (BFIE), also known as benign familial infantile seizures (BFIS) or benign familial infantile convulsions (BFIC) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
A family history of epilepsy in infancy distinguishes this syndrome from the non-familial classification (see benign infantile epilepsy), though the latter may be simply sporadic cases of the same genetic mutations. The condition is inherited with an autosomal dominant transmission. There are several genes responsible for this syndrome, on chromosomes 2, 16 and 19. It is generally described as idiopathic, meaning that no other neurological condition is associated with it or causes it. However, there are some forms that are linked to neurological conditions. One variant known as infantile convulsions and choreoathetosis (ICCA) forms an association between BFIE and paroxysmal kinesigenic choreoathetosis and has been linked to the PRRT2 gene on chromosome 16. An association with some forms of familial hemiplegic migraine (FHM) has also been found. Benign familial infantile epilepsy is not genetically related to benign familial neonatal epilepsy (BFNE), which occurs in neonates. However, a variation with seizure onset between two days and seven months called "benign familial neonatal–infantile seizures" (BFNIS) has been described, which is due to a mutation in the SCN2A gene.
West syndrome is a triad of developmental delay, seizures termed infantile spasms, and EEG demonstrating a pattern termed hypsarrhythmia. Onset occurs between three months and two years, with peak onset between eight and 9 months. West syndrome may arise from idiopathic, symptomatic, or cryptogenic causes. The most common cause is tuberous sclerosis. The prognosis varies with the underlying cause. In general, most surviving patients remain with significant cognitive impairment and continuing seizures and may evolve to another eponymic syndrome, Lennox-Gastaut syndrome. It can be classified as idiopathic, syndromic, or cryptogenic depending on cause and can arise from both focal or generalized epileptic lesions.
Idiopathic epilepsy does not have a classification due to the fact there are no known causes of these seizures, however both reactive and symptomatic secondary epilepsy can be placed into classifications.
Consistent risk factors include:
- Severity of seizures, increased refractoriness of epilepsy and presence of generalized tonic-clonic seizures: the most consistent risk factor is an increased frequency of tonic–clonic seizures.
- Poor compliance. Lack of therapeutic levels of anti-epileptic drugs, non-adherence to treatment regimens, and frequent changes in regimens are risk factors for sudden death.
- Young age, and early age of seizures onset.
- Male gender
- Poly-therapy of epilepsy. It remains unclear whether this is an independent risk factor or a surrogate marker for severity of epilepsy.
- Being asleep during a seizure is likely to favour SUDEP occurrence.
Cases of epilepsy may be organized into epilepsy syndromes by the specific features that are present. These features include the age at which seizures begin, the seizure types, and EEG findings, among others. Identifying an epilepsy syndrome is useful as it helps determine the underlying causes as well as what anti-seizure medication should be tried.
The ability to categorize a case of epilepsy into a specific syndrome occurs more often with children since the onset of seizures is commonly early. Less serious examples are benign rolandic epilepsy (2.8 per 100,000), childhood absence epilepsy (0.8 per 100,000) and juvenile myoclonic epilepsy (0.7 per 100,000). Severe syndromes with diffuse brain dysfunction caused, at least partly, by some aspect of epilepsy, are also referred to as epileptic encephalopathies. These are associated with frequent seizures that are resistant to treatment and severe cognitive dysfunction, for instance Lennox-Gastaut syndrome and West syndrome.
Epilepsies with onset in childhood are a complex group of diseases with a variety of causes and characteristics. Some people have no obvious underlying neurological problems or metabolic disturbances. They may be associated with variable degrees of intellectual disability, elements of autism, other mental disorders, and motor difficulties. Others have underlying inherited metabolic diseases, chromosomal abnormalities, specific eye, skin and nervous system features, or malformations of cortical development. Some of these epilepsies can be categorized into the traditional epilepsy syndromes. Furthermore, a variety of clinical syndromes exist of which the main feature is not epilepsy but which are associated with a higher risk of epilepsy. For instance between 1 and 10% of those with Down syndrome and 90% of those with Angelman syndrome have epilepsy.
In general, genetics is believed to play an important role in epilepsies by a number of mechanisms. Simple and complex modes of inheritance have been identified for some of them. However, extensive screening has failed to identify many single rare gene variants of large effect. In the epileptic encephalopathies, de novo mutagenesis appear to be an important mechanism. De novo means that a child is affected, but the parents do not have the mutation. De novo mutations occur in eggs and sperms or at a very early stage of embryonic development. In Dravet syndrome a single affected gene was identified.
Syndromes in which causes are not clearly identified are difficult to match with categories of the current classification of epilepsy. Categorization for these cases is made somewhat arbitrarily. The "idiopathic" (unknown cause) category of the 2011 classification includes syndromes in which the general clinical features and/or age specificity strongly point to a presumed genetic cause. Some childhood epilepsy syndromes are included in the unknown cause category in which the cause is presumed genetic, for instance benign rolandic epilepsy. Others are included in "symptomatic" despite a presumed genetic cause (in at least in some cases), for instance Lennox-Gastaut syndrome. Clinical syndromes in which epilepsy is not the main feature (e.g. Angelman syndrome) were categorized "symptomatic" but it was argued to include these within the category "idiopathic". Classification of epilepsies and particularly of epilepsy syndromes will change with advances in research.
Early myoclonic encephalopathy (EME) is an epilepsy syndrome where myoclonic seizures develop in the neonatal period. After several months, the seizure pattern may develop to infantile spasms (West syndrome). Various genetic and metabolic disorders are responsible. The seizures are resistant to treatment. The neurology is very abnormal and patients often do not live beyond one year.
Studies have found that the incidence of PTE ranges between 1.9 and more than 30% of TBI sufferers, varying by severity of injury and by the amount of time after TBI for which the studies followed subjects.
Brain trauma is one of the strongest predisposing factors for epilepsy development, and is an especially important factor in young adults. Young adults, who are at the highest risk for head injury, also have the highest rate of PTE, which is the largest cause of new-onset epilepsy cases in young people. Children have a lower risk for developing epilepsy; 10% of children with severe TBI and 16–20% of similarly injured adults develop PTE. Being older than 65 is also a predictive factor in the development of epilepsy after brain trauma. One study found PTE to be more common in male TBI survivors than in females.
The prognosis for epilepsy due to trauma is worse than that for epilepsy of undetermined cause. People with PTE are thought to have shorter life expectancies than people with brain injury who do not suffer from seizures. Compared to people with similar structural brain injuries but without PTE, people with PTE take longer to recover from the injury, have more cognitive and motor problems, and perform worse at everyday tasks. This finding may suggest that PTE is an indicator of a more severe brain injury, rather than a complication that itself worsens outcome. PTE has also been found to be associated with worse social and functional outcomes but not to worsen patients' rehabilitation or ability to return to work. However, people with PTE may have trouble finding employment if they admit to having seizures, especially if their work involves operating heavy machinery.
The period of time between an injury and development of epilepsy varies, and it is not uncommon for an injury to be followed by a latent period with no recurrent seizures. The longer a person goes without developing seizures, the lower the chances are that epilepsy will develop. At least 80–90% of people with PTE have their first seizure within two years of the TBI. People with no seizures within three years of the injury have only a 5% chance of developing epilepsy. However, one study found that head trauma survivors are at an increased risk for PTE as many as 10 years after moderate TBI and over 20 years after severe TBI. Since head trauma is fairly common and epilepsy can occur late after the injury, it can be difficult to determine whether a case of epilepsy resulted from head trauma in the past or whether the trauma was incidental.
The question of how long a person with PTE remains at higher risk for seizures than the general population is controversial. About half of PTE cases go into remission, but cases that occur later may have a smaller chance of doing so.
The lack of generally recognized clinical recommendations available are a reflection of the dearth of data on the effectiveness of any particular clinical strategy, but on the basis of present evidence, the following may be relevant:
- Epileptic seizure control with the appropriate use of medication and lifestyle counseling is the focus of prevention.
- Reduction of stress, participation in physical exercises, and night supervision might minimize the risk of SUDEP.
- Knowledge of how to perform the appropriate first-aid responses to seizure by persons who live with epileptic people may prevent death.
- People associated with arrhythmias during seizures should be submitted to extensive cardiac investigation with a view to determining the indication for on-demand cardiac pacing.
- Successful epilepsy surgery may reduce the risk of SUDEP, but this depends on the outcome in terms of seizure control.
- The use of anti suffocation pillows have been advocated by some practitioners to improve respiration while sleeping, but their effectiveness remain unproven because experimental studies are lacking.
- Providing information to individuals and relatives about SUDEP is beneficial.
The number cases of PRES that occur each year is not known. It may be somewhat more common in females.
Though there is limited evidence, outcomes appear to be relatively poor with a review of outcome studies finding that two thirds of PNES patients continue to experience episodes and more than half are dependent on social security at three-year followup. This outcome data was obtained in a referral-based academic epilepsy center and loss to follow-up was considerable; the authors point out ways in which this may have biased their outcome data. Outcome was shown to be better in patients with higher IQ, social status, greater educational attainments, younger age of onset and diagnosis, attacks with less dramatic features, and fewer additional somatoform complaints.
FIRES seizures are non-focal - there is no specified starting or stopping point - making brain surgery impossible. These seizures damage cognitive abilities of the brain such as memory or sensory abilities. This can result in learning disabilities, behavioral disorders, memory issues, sensory changes, inability to move, and death. Children continue to have seizures throughout their lives.
Following a first seizure, the risk of more seizures in the next two years is 40%–50%. The greatest predictors of more seizures are problems either on the electroencephalogram or on imaging of the brain. In adults, after 6 months of being seizure-free after a first seizure, the risk of a subsequent seizure in the next year is less than 20% regardless of treatment. Up to 7% of seizures that present to the emergency department (ER) are in status epilepticus. In those with a status epilepticus, mortality is between 10% and 40%. Those who have a seizure that is provoked (occurring close in time to an acute brain event or toxic exposure) have a low risk of re-occurrence, but have a higher risk of death compared to those with epilepsy.