Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
In itself, NSML is not a life-threatening diagnosis, most people diagnosed with the condition live normal lives. Obstructive cardiomyopathy and other pathologic findings involving the cardiovascular system may be a cause of death in those whose cardiac deformities are profound.
The incidence is estimated to range from 0.1–1.2 per 10,000 live births, though the true incidence is unknown. As of 2005, the highest prevalence was found in Canada and estimated at 1 in 8,500 live births.
The frequency is unknown, but the disease is considered to be very rare.
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
TBS is an autosomal dominant involving the a mutation of the gene SALL1, which encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. The clinical features of TBS overlap with VATER and VACTERL associations, oculo-auriculo-vertebral (OAV) spectrum, branchio-oto-renal (BOR) syndrome, and Fanconi anemia and other 'anus-hand-ear' syndromes.
Although some symptoms can be life-threatening, many people diagnosed with Townes-Brocks Syndrome live a normal lifespan.
In the two predominant mutations of NSML (Y279C and T468M) the mutations cause a loss of catalytic activity of the SHP2 protein (the gene product of the "PTPN11" gene), which is a previously unrecognized behavior for this class of mutations. This interferes with growth factor and related signalling. While further research confirms this mechanism, additional research is needed to determine how this relates to all of the observed effects of NSML.
Johnson–McMillin syndrome is a neuroectodermal syndrome that consist of conductive hearing loss and microtia.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
Weissenbacher-Zweymüller syndrome affects males and females in the same numbers. About 30 cases have been reported in medical literature. This disorder can be underdiagnosed causing no true frequency in the population. Only 30 cases have been reported in medical literature.
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
CHARGE syndrome was formerly referred to as CHARGE association, which indicates a non-random pattern of congenital anomalies that occurs together more frequently than one would expect on the basis of chance. Very few people with CHARGE will have 100% of its known features. In 2004, mutations on the CHD7 gene (located on Chromosome 8) were found in 10 of 17 patients in the Netherlands, making CHARGE an official syndrome. A US study of 110 individuals with CHARGE syndrome showed that 60% of those tested had a mutation of the CHD7 gene.
In 2010, a review of 379 clinically diagnosed cases of CHARGE syndrome, in which CHD7 mutation testing was undertaken found that 67% of cases were due to a CHD7 mutation. CHD7 is a member of the chromodomain helicase DNA-binding (CHD) protein family that plays a role in transcription regulation by chromatin remodeling.
Townes–Brocks syndrome (TBS) is a rare genetic disease that has been described in approximately 200 cases in the published literature. It affects both males and females equally. The condition was first identified in 1972. by Philip L. Townes, MD, PhD, who was at the time a human geneticists and Professor of Pediatrics, and Eric Brocks, MD, who was at the time a medical student, both at the University of Rochester.
One family of 68 individuals over 5 generations was studied and the prevalence of disease among the family members suggests that it is indicative of dominant inheritance that is not sexually linked. This is supported by the fact that the disease failed to skip generations even in the absence of intermarriages and that disease incidence was independent of sex. The current findings suggest that the cause of the disease could be narrowed down to one enzymatic defect that is involved in the development of neuroectodermal tissue, however the exact molecular mechanisms are currently unknown. The other symptoms that arise such as bone defects and diabetes may be secondary to this enzymatic defect.
Dominant genetic disorders can be caused by just a single copy of an abnormal gene. This abnormal gene can be the result of being inherited from either parent or be a new mutation. Most cases are caused by a de novo (new) mutation in the gene that occurs during the formation of the egg or sperm. These cases occur when there is no history of the disorder in the family.
The COL11A2 gene is responsible for providing instructions on making one component of the type XI collagen. Type XI collagen is a complex molecule that helps give structure and strength to the connective tissues. Collagen is found in bone. It is also found in cartilage that makes up most of the skeleton during early development. The mutation of COL11A2 in Weissenbacher-Zweymüller syndrome disrupts the assembly of the type XI collagen molecules. The malfunctioning collagen weakens the connective tissue causing impaired bone development.
COL11A2 is also associated with autosomal dominant non-syndromic hearing loss (ADNSHL). All mutations of COL11A2 in ADNSHL are missense mutations.
Fountain syndrome is an autosomal recessive congenital disorder characterized by mental retardation, deafness, skeletal abnormalities and a coarse face with full lips. The abnormal swelling of the cheeks and lips are due to the excessive accumulation of body fluids under the skin. The deafness is due to malformation of the cochlea structure within the inner ear.
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
ODD is typically an autosomal dominant condition, but can be inherited as a recessive trait. It is generally believed to be caused by a mutation in the gene GJA1, which codes for the gap junction protein connexin 43. Slightly different mutations in this gene may explain the different way the condition manifests in different families. Most people inherit this condition from one of their parents, but new cases do arise through novel mutations. The mutation has high penetrance and variable expression, which means that nearly all people with the gene show signs of the condition, but these signs can range from very mild to very obvious.
Björnstad syndrome is an autosomal recessive congenital condition involving pili torti and nerve deafness and hair abnormalities.
It was first characterized in 1965, in Oslo, by prof. Roar Theodor Bjørnstad (1908–2002).
It has been mapped to BCS1L. Hearing disabilities related to Björnstad syndrome are congenital, and the severity of the deafness varies from person to person. Pili torti is recognized in early childhood and is characterised by twisted hair shafts and brittle hair.
Bangstad syndrome is a severe, inherited congenital disorder associated with abnormalities of the cell membrane.
It was characterized in 1989.
Affected individuals have a somewhat shortened lifespan. The maximum described lifespan is 67 years. Adults with 13q deletion syndrome often need support services to maintain their activities of daily living, including adult day care services or housing services.