Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
If cesarean section is obtained in a timely manner, prognosis is good. Prolonged obstructed labour can lead to stillbirth, obstetric fistula, and maternal death.
In 2013 it resulted in 19,000 maternal deaths down from 29,000 deaths in 1990.
Although the definition is imprecise, it occurs in approximately 0.3-1% of vaginal births.
During labor the shoulder will be wedged into the pelvis and the head lie in one iliac fossa, the breech in the other. With further uterine contractions the baby suffocates. The uterus continues to try to expel the impacted fetus and as its retraction ring rises, the musculature in the lower segments thins out leading eventually to a uterine rupture and the death of the mother. Impacted shoulder presentations contribute to maternal mortality. Obviously a cesarean section should be performed before the baby has died, but even when the baby has died or impaction has occurred, C/S is the method of choice of delivery, as alternative methods of delivery are potentially too traumatic for the mother. If the baby is preterm or macerated and very small a spontaneous delivery has been observed.
A pregnant woman may have intercurrent diseases, defined as disease not directly caused by the pregnancy, but that may become worse or be a potential risk to the pregnancy.
- Diabetes mellitus and pregnancy deals with the interactions of diabetes mellitus (not restricted to gestational diabetes) and pregnancy. Risks for the child include miscarriage, growth restriction, growth acceleration, fetal obesity (macrosomia), polyhydramnios (too much amniotic fluid), and birth defects.
- Thyroid disease in pregnancy can, if uncorrected, cause adverse effects on fetal and maternal well-being. The deleterious effects of thyroid dysfunction can also extend beyond pregnancy and delivery to affect neurointellectual development in the early life of the child. Demand for thyroid hormones is increased during pregnancy which may cause a previously unnoticed thyroid disorder to worsen.
- Untreated celiac disease can cause spontaneous abortion (miscarriage), intrauterine growth restriction, small for gestational age, low birthweight and preterm birth. Often reproductive disorders are the only manifestation of undiagnosed celiac disease and most cases are not recognized. Complications or failures of pregnancy cannot be explained simply by malabsorption, but by the autoimmune response elicited by the exposure to gluten, which causes damage to the placenta. The gluten-free diet avoids or reduces the risk of developing reproductive disorders in pregnant women with celiac disease. Also, pregnancy can be a trigger for the development of celiac disease in genetically susceptible women who are consuming gluten.
- Systemic lupus erythematosus in pregnancy confers an increased rate of fetal death "in utero," spontaneous abortion, and of neonatal lupus.
- Hypercoagulability in pregnancy is the propensity of pregnant women to develop thrombosis (blood clots). Pregnancy itself is a factor of hypercoagulability (pregnancy-induced hypercoagulability), as a physiologically adaptive mechanism to prevent "post partum" bleeding. However, in combination with an underlying hypercoagulable states, the risk of thrombosis or embolism may become substantial.
Intrauterine exposure to environmental toxins in pregnancy has the potential to cause adverse effects on the development of the embryo/fetus and to cause pregnancy complications. Air pollution has been associated with low birth weight infants. Conditions of particular severity in pregnancy include mercury poisoning and lead poisoning. To minimize exposure to environmental toxins, the "American College of Nurse-Midwives" recommends: checking whether the home has lead paint, washing all fresh fruits and vegetables thoroughly and buying organic produce, and avoiding cleaning products labeled "toxic" or any product with a warning on the label.
Pregnant women can also be exposed to toxins in the workplace, including airborne particles. The effects of wearing N95 filtering facepiece respirators are similar for pregnant women as non-pregnant women, and wearing a respirator for one hour does not affect the fetal heart rate.
About 16% of deliveries where shoulder dystocia occurs will have conventional risk factors.
There are well-recognized risk factors, such as diabetes, fetal macrosomia, and maternal obesity, but it is often difficult to predict, despite recognised risk factors. Despite appropriate obstetric management, fetal injury (such as brachial plexus injury) or even fetal death can be a complication of this obstetric emergency.
Risk factors:
- Age >35
- Short in stature
- Small or abnormal pelvis
- More than 42 weeks gestation
- Estimated fetal weight > 4500g
- Maternal diabetes (2-4 fold increase in risk)
Factors which increase the risk/are warning signs:
- the need for oxytocics
- a prolonged first or second stage of labour
- turtle sign
- head bobbing in the second stage
- failure to restitute
- No shoulder rotation or descent
- Instrumental delivery
Recurrence rates are relatively high (if you had shoulder dystocia in a previous delivery the risk is now 10% higher than in the general population).
There are many causes of "fetal distress" including:
- Breathing problems
- Abnormal position and presentation of the fetus
- Multiple births
- Shoulder dystocia
- Umbilical cord prolapse
- Nuchal cord
- Placental abruption
- Premature closure of the fetal ductus arteriosus
- Uterine rupture
- Intrahepatic cholestasis of pregnancy, a liver disorder during pregnancy
Instead of referring to "fetal distress" current recommendations hold to look for more specific signs and symptoms, assess them, and take the appropriate steps to remedy the situationthrough the implementation of intrauterine resuscitation. Traditionally the diagnosis of "fetal distress" led the obstetrician to recommend rapid delivery by instrumental delivery or by caesarean section if vaginal delivery is not advised.
The delivery of the second twin in a transverse lie with a shoulder presentation represents a special situation that may be amenable to a vaginal delivery. As the first twin has just been delivered and the cervix is fully dilated the obstetrician may perform an internal version, that is inserting one hand into the uterus, find the baby’s feet, and then bring the baby into a breech position and deliver the baby as such.
Fetal malformations and birth injuries may occur as a result of exposure to environmental toxins such as mercury or lead. Many medications can also affect the development of the fetus, as can alcohol, tobacco, and illicit drugs.
"See Environmental toxins and fetal development."
"See Drugs in pregnancy."
Maternal infection may be transmitted to the fetus; this is called a vertically transmitted infection. The fetus has a weak immune system, so infections that are relatively minor in adults can be very serious in a developing fetus. In addition, some studies suggest that maternal infections increase the risk of neurodevelopmental disorders, including schizophrenia, in the child.
An obstetric labor complication is a difficulty or abnormality that arises during the process of labor or delivery.
An example is dystocia.
Genetics plays a role in having a baby born with LGA. Taller, heavier parents tend to have larger babies. Babies born to an obese mother have greatly increased chances of LGA.
There are believed to be links with polyhydramnios (excessive amniotic sac fluid). If one has excessive amniotic fluid, microsomia is more likely, since there is no room for the baby to grow. Preterm labor is also highly likely for polyhydramnios.
Obese women have an increased risk of pregnancy-related complications, including hypertension, gestational diabetes, and blood clots. Also, the mother is at risk of going into preterm labor. Maternal obesity is also known to be associated with increased rates of complications in late pregnancy such as cesarean delivery, and shoulder dystocia. A meta-analysis estimated that Cesarean delivery rates increased with odds ratios of 1.5 among overweight, 2 among obese, and 3 among severely obese women, compared with normal weight pregnant women. In addition, morbidly obese women who have not had children before are at increased risk of all–cause preterm deliveries. It is well recognized that obese women are at increased risk of preeclampsia and that women who have never been pregnant are at higher risk of preeclampsia than women who have had children in the past.
Because the black cherry tree is the preferred host tree for the eastern tent caterpillar, one approach to prevention is to simply remove the trees from the vicinity of horse farms, which was one of the very first recommendations made concerning MRLS. Next, because the brief time for which the full-grown ETCs are on the ground in the vicinity of pregnant mares, simply keeping pregnant mares out of contact with them is also an effective preventative mechanism. In this regard, one Kentucky horse farm took the approach of simply muzzling mares during an ETC exposure period, an approach which was reportedly effective.
No effective treatment for MRLS is apparent. Mares which aborted are treated with broad-spectrum antibiotics to avoid bacterial infections. The foals born from mares infected with MRLS are given supportive care and supplied with medication to reduce inflammatory response and improve blood flow, but none of the treatments appears to be effective, as the majority of the foals do not survive. Unilateral uveitis is treated symptomatically with antibiotics and anti-inflammatory drugs.
Mare reproductive loss syndrome (MRLS) is a syndrome consisting of equine abortions and three related nonreproductive syndromes which occur in horses of all breeds, sexes, and ages. MRLS was first observed in the U.S. state of Kentucky in a three-week period around May 5, 2001, when about 20% to 30% of Kentucky's pregnant mares suffered abortions. A primary infectious cause was rapidly ruled out, and the search began for a candidate toxin. No abortifacient toxins were identified.
In the spring of 2001, Kentucky had experienced an extraordinarily heavy infestation of eastern tent caterpillars (ETCs). An epidemiological study showed ETCs to be associated with MRLS. When ETCs returned to Kentucky in the spring of 2002, equine exposure to caterpillars was immediately shown to produce abortions. Research then focused on how the ETCs produced the abortions. Reviewing the speed with which ETCs produced late-term abortions in 2002 experiments, the nonspecific bacterial infections in the placenta/fetus were assigned a primary driving role. The question then became how exposure to the caterpillars produced these non-specific bacterial infections of the affected placenta/fetus and also the uveitis and pericarditis cases.
Reviewing the barbed nature of ETC hairs (setae), intestinal blood vessel penetration by barbed setal fragments was shown to introduce barbed setal fragments and associated bacterial contaminants into intestinal collecting blood vessels (septic penetrating setae). Distribution of these materials following cardiac output would deliver these materials to all tissues in the body (septic penetrating setal emboli). About 15% of cardiac output goes to the late-term fetus, at which point the septic barbed setal fragments are positioned to penetrate placental tissues which lack an immune response. Bacterial proliferation, therefore, proceeds unchecked and the late-term fetus is rapidly aborted.
Similar events occur with the early-term fetus, but as a much smaller target receiving an equivalently smaller fraction of cardiac output, the early-term fetus is less likely to be "hit" by a randomly distributing setal fragment. Since this MRLS pathogenesis model was first proposed in 2002, other caterpillar-related abortion syndromes have been recognized, most notably equine amnionitis and fetal loss in Australia, and more recently, a long-recognized relationship between pregnant camels eating caterpillars and abortions among the camel pastoralists in the western Sahara.
Researchers from the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) conducted a study and found that early-onset paternal obesity is connected with an increased risk of liver disease in their kin. Researchers found that obese fathers had an elevated level of serum alanine aminotransferase (ALT), a liver enzyme, compared to fathers who were not obese. They did a secondary analysis that excluded obese offspring. Children who were a normal weight but had obese fathers still had elevated ALT levels, which indicated that a child's ALT levels are not dependent upon the child's own BMI.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.
Brachial plexus injury is found in both children and adults, but there is a difference between children and adults with BPI.
Diprosopus (Greek , "two-faced", from , ', "two" and , ' [neuter], "face", "person"; with Latin ending), also known as craniofacial duplication (cranio- from Greek , "skull", the other parts Latin), is an extremely rare congenital disorder whereby parts (accessories) or all of the face are duplicated on the head.
Maternal complications of pregnancy may include mirror syndrome. Maternal complications of delivery may include a Cesarean section or, alternatively, a vaginal delivery with mechanical dystocia.
Complications of the mass effect of a teratoma in general are addressed on the teratoma page. Complications of the mass effect of a large SCT may include hip dysplasia, bowel obstruction, urinary obstruction, hydronephrosis and hydrops fetalis. Even a small SCT can produce complications of mass effect, if it is presacral (Altman Type IV). In the fetus, severe hydronephrosis may contribute to inadequate lung development. Also in the fetus and newborn, the anus may be imperforate.
Later complications of the mass effect and/or surgery may include neurogenic bladder, other forms of urinary incontinence, fecal incontinence, and other chronic problems resulting from accidental damage to or sacrifice of nerves and muscles within the pelvis. Removal of the coccyx may include additional complications. In one review of 25 patients, however, the most frequent complication was an unsatisfactory appearance of the surgical scar.