Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
Substances whose toxicity can cause congenital disorders are called "teratogens", and include certain pharmaceutical and recreational drugs in pregnancy as well as many environmental toxins in pregnancy.
A review published in 2010 identified 6 main teratogenic mechanisms associated with medication use: folate antagonism, neural crest cell disruption, endocrine disruption, oxidative stress, vascular disruption and specific receptor- or enzyme-mediated teratogenesis.
It is estimated that 10% of all birth defects are caused by prenatal exposure to a teratogenic agent. These exposures include, but are not limited to, medication or drug exposures, maternal infections and diseases, and environmental and occupational exposures. Paternal smoking use has also been linked to an increased risk of birth defects and childhood cancer for the offspring, where the paternal germline undergoes oxidative damage due to cigarette use. Teratogen-caused birth defects are potentially preventable. Studies have shown that nearly 50% of pregnant women have been exposed to at least one medication during gestation. During pregnancy, a female can also be exposed to teratogens from the contaminated clothing or toxins within the seminal fluid of a partner. An additional study found that of 200 individuals referred for genetic counseling for a teratogenic exposure, 52% were exposed to more than one potential teratogen.
Several studies have reported that life expectancy appears to be normal for people with CCD.
Arthrogryposis is a rare condition. Some authors say the overall prevalence is one in 3000 and others say it is one in 11000-12000 among European live births. Congenital clubfoot is the most common single contracture and its prevalence is one in 500 live births.
Congenital limb deformities are congenital musculoskeletal disorders which primarily affect the upper and lower limbs.
An example is polydactyly.
Till date about 18 cases of Spondylocostal dysostosis have been reported in literature.
It is usually autosomal dominant, but in some cases the cause is not known. It occurs due to haploinsufficiency caused by mutations in the CBFA1 gene (also called Runx2), located on the short arm of chromosome 6, which encodes transcription factor required for osteoblast differentiation. It results in delayed ossification of midline structures of the body, particularly membranous bone.
A new article reports that the CCD cause is thought to be due to a CBFA1 (core binding factor activity 1) gene defect on the short arm of chromosome 6p21 . CBFA1 is vital for differentiation of stem cells into osteoblasts, so any defect in this gene will cause defects in membranous and endochondral bone formation.
A deficiency of folate itself does not cause neural tube defects. The association seen between reduced neural tube defects and folic acid supplementation is due to a gene-environment interaction such as vulnerability caused by the C677T Methylenetetrahydrofolate reductase (MTHFR) variant. Supplementing folic acid during pregnancy reduces the prevalence of NTDs by not exposing this otherwise sub-clinical mutation to aggravating conditions. Other potential causes can include folate antimetabolites (such as methotrexate), mycotoxins in contaminated corn meal, arsenic, hyperthermia in early development, and radiation. Maternal obesity has also been found to be a risk factor for NTDs. Studies have shown that both maternal cigarette smoking and maternal exposure to secondhand smoke increased the risk for neural tube defects in offspring. A mechanism by which maternal exposure to cigarette smoke could increase NTD risk in offspring is suggested by several studies that show an association between cigarette smoking and elevations of homocysteine levels. Cigarette smoke during pregnancy, including secondhand exposure, can increase the risk of neural tube defects. All of the above may act by interference with some aspect of normal folic acid metabolism and folate linked methylation related cellular processes as there are multiple genes of this type associated with neural tube defects.
Babies born with Jarcho-Levin may be very healthy and grow up to lead normal lives. However, many individuals with Jarcho-Levin suffer from problems of respiratory insufficiency secondary to volume-restricted thoraces. These individuals will often develop pulmonary complications and die in infancy or early childhood. The disparity in outcomes of those with the syndrome is related to the fact that Jarcho-Levin actually encompasses two or more distinct syndromes, each with its own range of prognoses. The syndromes currently recognized as subtypes of Jarcho-Levin are termed spondylothoracic dysplasia and spondylocostal dysostosis. The disease is related to the SRRT gene.
70-80% of the cases of the most severe forms of arthrogryposis are caused by neurological abnormalities, which can be either genetic or environmental.
The underlying aetiology and pathogenesis of congenital contractures, particularly arthrogryposis and the mechanism of the mutations remains an active area of investigation. Because identifying these factors could help to develop treatment and congenital finding of arthrogryposis.
The exact cause of congenital amputation is unknown and can result from a number of causes. However, most cases show that the first three months in a pregnancy are when most birth defects occur because that is when the organs of the fetus are beginning to form. One common cause is amniotic band syndrome, which occurs when the inner fetal membrane (amnion) ruptures without injury to the outer membrane (chorion). Fibrous bands from the ruptured amnion float in the amniotic fluid and can get entangled with the fetus, thus reducing blood supply to the developing limbs to such an extent that the limbs can become strangulated; the tissues die and are absorbed into the amniotic fluid. A baby with congenital amputation can be missing a portion of a limb or the entire limb, which results in the complete absence of a limb beyond a certain point where only a stump is left is known as transverse deficiency or amelia. When a specific part is missing, it is referred to as longitudinal deficiency. Finally, phocomelia occurs when only a mid-portion of a limb is missing; for example when the hands or feet are directly attached to the trunk of the body.
Amnion ruptures can be caused by:
- teratogenic drugs (e.g. thalidomide, which causes phocomelia), or environmental chemicals
- ionizing radiation (atomic weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
- trauma
Congenital amputation is the least common reason for amputation, but it is projected that one in 2000 babies are born each year with a missing or deformed limb. During certain periods in history, an increase in congenital amputations has been documented. One example includes the thalidomide tragedy that occurred in the 1960s when pregnant mothers were given a tranquilizer that contained the harmful drug, which produced an increase in children born without limbs. Another example was the 1986 Chernobyl catastrophe in Ukraine, where the radiation exposure caused many children to be born with abnormal or missing limbs .
Adducted thumb syndrome recessive form is a rare disease affecting multiple systems causing malformations of the palate, thumbs, and upper limbs. The name Christian syndrome derives from Joe. C. Christian, the first person to describe the condition. Inheritance is believed to be autosomal recessive, caused by mutation in the CHST14 (carbohydrate sulfotransferase 14) gene.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
Folic acid supplementation reduces the prevalence of neural tube defects by approximately 70% of neural tube defects indicating that 30% are not folate-dependent and are due to some cause other than alterations of methylation patterns. Multiple other genes related to neural tube defects exist which are candidates for folate insensitive neural tube defects. There are also several syndromes such as Meckel syndrome, and Triploid Syndrome which are frequently accompanied by neural tube defects that are assumed to be unrelated to folate metabolism
Mesomelia refers to conditions in which the middle parts of limbs are disproportionately short. When applied to skeletal dysplasias, mesomelic dwarfism describes generalised shortening of the forearms and lower legs. This is in contrast to rhizomelic dwarfism in which the upper portions of limbs are short such as in achondroplasia.
Forms of mesomelic dwarfism currently described include:
- Langer mesomelic dysplasia
- Ellis–van Creveld syndrome
- Robinow syndrome
- Léri–Weill dyschondrosteosis
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Frontonasal dysplasia (FND) is a congenital malformation of the midface.
For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism (an increased distance between the eyes), a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele (an opening of the skull with protrusion of the brain) or V-shaped hair pattern on the forehead.
The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.
This syndrome is associated with microcephaly, arthrogryposis and cleft palate and various craniofacial, respiratory, neurological and limb abnormalities, including bone and joint defects of the upper limbs, adducted thumbs, camptodactyly and talipes equinovarus or calcaneovalgus. It is characterized by craniosynostosis, and myopathy in association with congenital generalized hypertrichosis.
Patients with the disease are considered intellectually disabled. Most die in childhood. Patients often suffer from respiratory difficulties such as pneumonia, and from seizures due to dysmyelination in the brain's white matter. It has been hypothesized that the Moro reflex (startle reflex in infants) may be a tool in detecting the congenital clapsed thumb early in infancy. The thumb normally extends as a result of this reflex.
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
AOS is a rare genetic disorder and the annual incidence or overall prevalence of AOS is unknown. Approximately 100 individuals with this disorder have been reported in the medical literature.
Heart-hand syndromes are a group of rare diseases that manifest with both heart and limb deformities.
, known heart-hand syndromes include Holt–Oram syndrome, Berk–Tabatznik syndrome, heart-hand syndrome type 3, brachydactyly-long thumb syndrome, patent ductus arteriosus-bicuspid aortic valve syndrome and heart hand syndrome, Slovenian type.
A dysostosis is a disorder of the development of bone, in particular affecting ossification.
Examples include craniofacial dysostosis, Klippel–Feil syndrome, and Rubinstein–Taybi syndrome.
It is one of the two categories of constitutional disorders of bone (the other being osteochondrodysplasia).
When the disorder involves the joint between two bones, the term "synostosis" is often used.
Genetic studies have linked the autosomal recessive form of the disorder to the "ROR2" gene on position 9 of the long arm of chromosome 9. The gene is responsible for aspects of bone and cartilage growth. This same gene is involved in causing autosomal dominant brachydactyly B.
The autosomal dominant form has been linked to three genes - WNT5A, Segment polarity protein dishevelled homolog DVL-1 (DVL1) and Segment polarity protein dishevelled homolog DVL-3 (DVL3). This form is often caused by new mutations and is generally less severe then the recessive form. Two further genes have been linked to this disorder - Frizzled-2 (FZD2) and Nucleoredoxin (NXN gene). All of these genes belong to the same metabolic pathway - the WNT system. This system is involved in secretion for various compounds both in the fetus and in the adult.
A fetal ultrasound can offer prenatal diagnosis 19 weeks into pregnancy. However, the characteristics of a fetus suffering from the milder dominant form may not always be easy to differentiate from a more serious recessive case. Genetic counseling is an option given the availability of a family history.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.