Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Drowning is a major worldwide cause of death and injury in children. Long term neurological outcomes of drowning cannot be predicted accurately during the early stages of treatment and although survival after long submersion times, mostly by young children, has been reported, many survivors will remain severely and permanently neurologically compromised after much shorter submersion times. Factors affecting probability of long term recovery with mild deficits or full function in young children include the duration of submersion, whether advanced life support was needed at the accident site, the duration of cardiopulmonary resuscitation, and whether spontaneous breathing and circulation are present on arrival at the emergency room.
Data on long-term outcome are scarce and unreliable. Neurological examination at the time of discharge from hospital does not accurately predict long term outcomes. Some victims who suffered from severe brain injury and were transferred to other institutions died months or years after the drowning and are recorded as survivors. Non-fatal drownings have been estimated as two to four times more frequent than fatal drownings.
Drowning victims who arrive at a hospital with spontaneous circulation and breathing usually recover with good outcomes. Early provision of basic and advanced life support improve probability of positive outcome.
Longer duration of submersion is associated with lower probability of survival and higher probability of permanent neurological damage.
Contaminants in the water can cause bronchospasm and impaired gas exchange, and can cause secondary infection with delayed severe respiratory compromise.
Low water temperature can cause ventricular fibrillation, but hypothermia during immersion can also slow the metabolism, allowing a longer hypoxia before severe damage occurs. Hypothermia which reduces brain temperature significantly can improve outcome. A reduction of brain temperature by 10 °C decreases ATP consumption by approximately 50%, which can double the time that the brain can survive.
The younger the victim, the better the chances of survival. In one case, a child submerged in cold () water for 66 minutes was resuscitated without apparent neurological damage. However, over the long term significant deficits were noted, including a range of cognitive difficulties, particularly general memory impairment, although recent magnetic resonance imaging (MRI) and magnetoencephalography (MEG) were within normal range.
Perinatal asphyxia is the medical condition resulting from deprivation of oxygen (hypoxia) to a newborn infant long enough to cause apparent harm. It results most commonly from a drop in maternal blood pressure or interference during delivery with blood flow to the infant's brain. This can occur as a result of inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Situations that can cause asphyxia include but are not limited to: the constriction or obstruction of airways, such as from asthma, laryngospasm, or simple blockage from the presence of foreign materials; from being in environments where oxygen is not readily accessible: such as underwater, in a low oxygen atmosphere, or in a vacuum; environments where sufficiently oxygenated air is present, but cannot be adequately breathed because of air contamination such as excessive smoke.
Other causes of oxygen deficiency include
but are not limited to:
- Acute respiratory distress syndrome
- Carbon monoxide inhalation, such as that from a car exhaust and the smoke's emission from a lighted cigarette: carbon monoxide has a higher affinity than oxygen to the hemoglobin in the blood's red blood corpuscles, bonding with it tenaciously, and, in the process, displacing oxygen and preventing the blood from transporting oxygen around the body
- Contact with certain chemicals, including pulmonary agents (such as phosgene) and blood agents (such as hydrogen cyanide)
- Drowning
- Drug overdose
- Exposure to extreme low pressure or vacuum to the pattern (see space exposure)
- Hanging, specifically suspension or short drop hanging
- Self-induced hypocapnia by hyperventilation, as in shallow water or deep water blackout and the choking game
- Inert gas asphyxiation
- Congenital central hypoventilation syndrome, or primary alveolar hypoventilation, a disorder of the autonomic nervous system in which a patient must consciously breathe; although it is often said that persons with this disease will die if they fall asleep, this is not usually the case
- Respiratory diseases
- Sleep apnea
- A seizure which stops breathing activity
- Strangling
- Breaking the wind pipe.
- Prolonged exposure to chlorine gas
Hypoxic hypoxia is a result of insufficient oxygen available to the lungs. A blocked airway, a drowning or a reduction in partial pressure (high altitude above 10,000 feet) are examples of how lungs can be deprived of oxygen. Some medical examples are abnormal pulmonary function or respiratory obstruction. Hypoxic hypoxia is seen in patients suffering from chronic obstructive pulmonary diseases (COPD), neuromuscular diseases or interstitial lung disease.
Exsanguination is a relatively uncommon cause of death in human beings. Traumatic injury can cause exsanguination if bleeding is not promptly controlled, and is the most common cause of death in military combat. Non-combat causes can include gunshot or stab wounds; motor vehicle crash injuries; suicide by severing arteries, typically those in the wrists; and partial or total limb amputation, such as via accidental contact with a circular or chain saw, or becoming entangled in operating machinery.
Patients can also develop catastrophic internal hemorrhages, such as from a bleeding peptic ulcer, postpartum bleeding or splenic hemorrhage, which can cause exsanguination without any external signs of distress. Another cause of exsanguination in the medical field is that of aneurysms. If a dissecting aortic aneurysm ruptures through the adventitia, massive hemorrhage and exsanguination can result in a matter of minutes.
Blunt force trauma to the liver, kidneys, and spleen can cause severe internal bleeding as well, though the abdominal cavity usually becomes visibly darkened as if bruised. Similarly, trauma to the lungs can cause bleeding out, though without medical attention, blood can fill the lungs causing the effect of drowning, or in the pleura causing suffocation, well before exsanguination would occur. In addition, serious trauma can cause tearing of major blood vessels without external trauma indicative of the damage.
Alcoholics and others with liver disease can also suffer from exsanguination. Thin-walled, normally low pressure dilated veins just below the lower esophageal mucosa called esophageal varices can become enlarged in conditions with portal hypertension. These may begin to bleed, which with the high pressure in the portal system can be fatal. The often causative impaired liver function also reduces the availability of clotting factors (many of which are made in the liver), making any rupture in vessels more likely to cause a fatal loss of blood.
In the UK, 28,354 cases of hypothermia were treated in 2012-13 – an increase of 25% from the previous year. Some cases of hypothermia death, as well as other preventable deaths, happen because poor people cannot easily afford to keep warm. Rising fuel bills have increased the numbers who have difficulty paying for adequate heating in the UK. Some pensioners and disabled people are at risk because they do not work and cannot easily get out of their homes. Better heat insulation can help.
Alcohol consumption increases the risk of hypothermia by its action as a vasodilator. It increases blood flow to the skin and extremities, making a person "feel" warm, while increasing heat loss. Between 33% and 73% of hypothermia cases are complicated by alcohol.
Sixty percent of people with acute interstitial pneumonitis will die in the first six months of illness. The median survival is 1½ months.
However, most people who have one episode do not have a second. People who survive often recover lung function completely.
Acute interstitial pneumonitis occurs most frequently among people older than forty years old. It affects men and women equally. There are no known risk factors; in particular, smoking is not associated with increased risk.
Exsanguination is the process of blood loss, to a degree sufficient to cause death. One does not have to lose all of one's blood to cause death. Depending upon the age, health, and fitness level of the individual, people can die from losing half to two-thirds of their blood; a loss of roughly one-third of the blood volume is considered very serious. Even a single deep cut can warrant suturing and hospitalization, especially if trauma, a vein or artery, or another comorbidity is involved. It is most commonly known as "bleeding to death" or colloquially as "bleeding out". The word itself originated from Latin: "ex" ("out of") and "sanguis" ("blood").
Hyperosmolar syndrome or diabetic hyperosmolar syndrome is a medical emergency caused by a very high blood glucose level.
The prefix "hyper" means high, and "osmolarity" is a measure of the concentration of active particles in a solution, so the name of the syndrome simply refers to the high concentration of glucose in the blood.
When laryngospasm is coincident with a cold or flu, it may be helpful for some sufferers to take acid reflux medication to limit the irritants in the area. If a cough is present, then treat a wet cough; but limit coughing whenever possible, as it is only likely to trigger a spasm. Drink water or tea to keep the area from drying up. Saline drops also help to keep the area moist. Pseudoephederine may also help to clear any mucus that may cause coughing and thereby triggering more spasms.
Gangrene is caused by a critically insufficient blood supply (e.g., peripheral vascular disease) or infection. It is associated with diabetes and long-term tobacco smoking.
Dry gangrene is a form of coagulative necrosis that develops in ischemic tissue, where the blood supply is inadequate to keep tissue viable. It is a not a disease itself, but a symptom of other diseases. Dry gangrene is often due to peripheral artery disease, but can be due to acute limb ischemia. The limited oxygen in the ischemic limb limits putrefaction and bacteria fail to survive. The affected part is dry, shrunken and dark reddish-black. The line of separation usually brings about complete separation, with eventual falling off of the gangrenous tissue if it is not removed surgically, a process called autoamputation.
Dry gangrene is the end result of chronic ischemia without infection. If ischemia is detected early, when ischemic wounds rather than gangrene are present, the process can be treated by revascularization (via vascular bypass or angioplasty). However, once gangrene has developed, the affected tissues are not salvageable. Because dry gangrene is not accompanied by infection, it is not as as gas gangrene or wet gangrene, both of which have a risk of sepsis. Over time, dry gangrene may develop into wet gangrene if an infection develops in the dead tissues.
Diabetes mellitus is a risk-factor for peripheral vascular disease and thus for dry gangrene, but also a risk factor for wet gangrene, particularly in patients with poorly controlled blood-sugars, as elevated serum glucose creates a favorable environment for bacterial infection.
Minor laryngospasm will generally resolve spontaneously in the majority of cases.
Laryngospasm in the operating room is treated by hyperextending the patient's neck and administering assisted ventilation with 100% oxygen. In more severe cases it may require the administration of an intravenous muscle relaxant, such as Succinylcholine, and reintubation.
When Gastroesophageal Reflux Disease (GERD) is the trigger, treatment of GERD can help manage laryngospasm. Proton pump inhibitors such as Dexlansoprazole (Dexilant), Esomeprazole (Nexium), and Lansoprazole (Prevacid) reduce the production of stomach acids, making reflux fluids less irritant. Prokinetic agents reduce the amount of acid available by stimulating movement in the digestive tract.
Spontaneous laryngospasm can be treated by staying calm and breathing slowly, instead of gasping for air. Drinking (tiny sips) of ice water to wash away any irritants that may be the cause of the spasm can also help greatly.
Patients who are prone to laryngospasm during illness can take measures to prevent irritation such as antacids to avoid acid reflux, and constantly drinking water or tea keep the area clear of irritants.
Additionally, laryngospasms can result from hypocalcemia, causing muscle spasms and/or tetany. Na+ channels remain open even if there is very little increase in the membrane potential. This affects the small muscles of the vocal folds.
There is currently a limited amount of information available on the incidence and prevalence of VCD, and the various rates reported in the literature are most likely an underestimate. Although VCD is thought to be rare overall, its prevalence among the population at large is not known.
However, numerous studies have been conducted on its incidence and prevalence among patients presenting with asthma and exertional dyspnea. A VCD incidence rate of 2% has been reported among patients whose primary complaint was either asthma or dyspnea; the same incidence rate has also been reported among patients with acute asthma exacerbation. Meanwhile, much higher VCD incidence rates have also been reported in asthmatic populations, ranging from 14% in children with refractory asthma to 40% in adults with the same complaint. It has also been reported that the VCD incidence rate is as high as 27% in non-asthmatic teenagers and young adults.
Data on the prevalence of VCD is also limited. An overall prevalence of 2.5% has been reported in patients presenting with asthma. Among adults with asthma considered "difficult to control", 10% were found to have VCD while 30% were found to have both VCD and asthma. Among children with severe asthma, a VCD prevalence rate of 14% has been reported. However, higher rates have also been reported; among one group of schoolchildren thought to suffer from exercise-induced asthma, it was found that 26.9% actually had VCD and not asthma. Among intercollegiate athletes with exercise-induced asthma, the VCD rate has been estimated at 3%.
In patients presenting with symptoms of dyspnea, prevalence rates ranging from 2.8% to 22% have been reported in various studies. It has been reported that two to three times more females than males suffer from VCD. VCD is especially common in females who suffer from psychological problems. There is an increased risk associated with being young and female. Among patients suffering from VCD, 71% are over the age of 18. In addition, 73% of those with VCD have a previous psychiatric diagnosis. VCD has also been reported in newborns with gastroesophageal reflux disorder (GERD).
Chewing: Horses may develop choke if they do not chew their food properly. Therefore, horses with dental problems (e.g. acquired or congenital malocclusion, loose or missing teeth, or excessively sharp dental ridges) that do not allow them to completely grind their food are particularly at risk. In addition, horses that bolt their feed and do not take the time to chew properly are more likely to suffer from choke.
Dry Food: Dry foods may cause choke, especially if the horse does not have free access to water, or if the horse has other risk factors linked to choking. While pelleted or cubed feeds in general fall in this category, horse owners sometimes express particular concerns about beet pulp. However, while horses have choked on beet pulp, a university study did not document that beet pulp is a particular problem. It is believed that choke related to beet pulp is linked to the particle size and the horse's aggressive feeding behaviour, rather than the actual feed itself. Research suggests that horses that bolt their feed without sufficient chewing, or who do not have adequate access to water, are far more likely to choke, regardless of the type of feed, compared to horses that eat at a more leisurely rate. The risk of choke associated with any dry feed can be reduced by soaking the ration prior to feeding.
Foreign Objects: Horse may ingest non-edible materials such as pieces of wood. Cribbers may be more prone to this type of choke, if they happen to swallow a piece of wood or other material while cribbing.
The current incidence in the United States is somewhere around 0.5% per year; overall, the incidence rate for developed world falls between 0.2–0.7%. In developing countries, the incidence of omphalitis varies from 2 to 7 for 100 live births. There does not appear to be any racial or ethnic predilection.
Like many bacterial infections, omphalitis is more common in those patients who have a weakened or deficient immune system or who are hospitalized and subject to invasive procedures. Therefore, infants who are premature, sick with other infections such as blood infection (sepsis) or pneumonia, or who have immune deficiencies are at greater risk. Infants with normal immune systems are at risk if they have had a prolonged birth, birth complicated by infection of the placenta (chorioamnionitis), or have had umbilical catheters.
The following factors increase some people's susceptibility to airsickness:
- Fatigue, stress, and anxiety, are some factors that can increase susceptibility to motion sickness of any type.
- The use of alcohol, drugs, and medications may also contribute to airsickness.
- Additionally, airsickness is more common in women (especially during menstruation or pregnancy), young children, and individuals prone to other types of motion sickness.
- Although airsickness is uncommon among experienced pilots, it does occur with some frequency in student pilots.
The following increase an individual's chances for acquiring VCD:
- Upper airway inflammation (allergic or non-allergic rhinitis, chronic sinusitis, recurrent upper respiratory infections)
- Gastroesophageal reflux disease
- Past traumatic event that involved breathing (e.g. near-drowning, suffocation)
- Severe emotional trauma or distress
- Female gender
- Playing a wind instrument
- Playing a competitive or elite sport
Choking horses should be deprived of food and drink pending veterinary attention, so as not to increase the obstructive load within the esophagus. The veterinarian will often sedate the horse and administer spasmolytics, such as butylscopolamine, to help the esophagus to relax. Once the muscles of the esophagus no longer force the food down the throat (active peristalsis), it may slip down on its own accord. If spasmolytics do not solve the problem, the veterinarian will usually pass a stomach tube through one of the nostrils and direct it into the esophagus until the material is reached, at which point "gentle" pressure is applied to manually push the material down. Gentle warm water lavage (water sent through the stomach tube, to soften the food material) may be required to help the obstructing matter pass more easily, but caution should be exercised to prevent further aspiration of fluid into the trachea.
Refractory cases are sometimes anesthetised, with an orotracheal tube placed to prevent further aspiration and to allow for more vigorous lavage. Disruption of the impacted material can sometimes be achieved via endoscopy. If these methods still do not lead to results, the horse may require surgery to remove the material.
Some workers have advocated the use of oxytocin in choke, on the grounds that it decreases the esophageal muscular tone. However, this technique is not suitable in pregnant mares, as it may lead to abortion.
Travelers who are susceptible to motion sickness can minimize symptoms by:
- Choosing a window seat with a view of the ground or of lower clouds, such that motion can be detected. This will not work if the plane is flown in the clouds for a long duration.
- Choosing seats with the smoothest ride in regards to pitch (the seats over the wings in an airplane). (This may not be sufficient for sensitive individuals who need to see ground movement)
- Sitting facing forward while focusing on distant objects rather than trying to read or look at something inside the airplane.
- Eating dry crackers, olives or suck on a lemon, to dry out the mouth, lessening nausea.
- Drinking a carbonated beverage.
Smoking and tobacco use of any kind are associated with increased risk of dry socket. This may be partially due to the vasoconstrictive action of nicotine on small blood vessels. Abstaining from smoking in the days immediately following a dental extraction reduces the risk of a dry socket occurring.
Vasoconstrictors are present in most local anesthetics, and are intended to increase the length of analgesia by reducing blood supply to the region which reduces the amount of local anesthetic solution that is absorbed into the circulation and carried from the local tissues. Hence, use of local anesthetics with vasoconstrictors is associated with an increased risk of dry socket occurring. However, frequently use of local anesthetic without vasoconstrictors would not provide sufficient analgesia, especially in the presence of acute pain and infection, meaning that the total dose of local anesthetic may need to be increased. Adequate pain control during the extraction is balanced against an increased risk of dry socket.