Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An increased risk of tardive dyskinesia has been associated with smoking in some studies, although a negative study does exist. There seems to be a cigarette smoke-exposure-dependent risk for TD in antipsychotic-treated patients. Elderly patients are also at a heightened risk for developing TD, as are females and those with organic brain injuries or diabetes mellitus and those with the negative symptoms of schizophrenia. TD is also more common in those that experience acute neurological side effects from antipsychotic drug treatment. Racial discrepancies in TD rate also exist, with Africans and African Americans having higher rates of TD after exposure to antipsychotics. Certain genetic risk factors for TD have been identified including polymorphisms in the genes encoding the D, 5-HT and 5-HT receptors.
Tardive dyskinesia most commonly occurs in patients with psychiatric conditions who are treated with antipsychotic medications for many years. The average prevalence rate has been estimated to be around 30% for individuals taking antipsychotic medication, such as that used to treat schizophrenia. A study being conducted at the Yale University School of Medicine has estimated that "32% of patients develop persistent tics after 5 years on major tranquilizers, 57% by 15 years, and 68% by 25 years." More drastic data was found during a longitudinal study conducted on individuals 45 years of age and older who were taking antipsychotic drugs. According to this research study, 26% of patients developed tardive dyskinesia after just one year on the medication. Another 60% of this at-risk group developed the disorder after 3 years, and 23% developed "severe" cases of tardive dyskinesia within 3 years. According to these estimates, the majority of patients will eventually develop the disorder if they remain on the drugs long enough.
Elderly patients are more prone to develop tardive dyskinesia, and elderly women are more at-risk than elderly men. The risk is much lower for younger men and women, and also more equal across the sexes. Patients who have undergone electro-convulsive therapy or have a history of diabetes or alcohol abuse also have a higher risk of developing tardive dyskinesia.
Several studies have recently been conducted comparing the prevalence rate of tardive dyskinesia with second generation, or more modern, antipsychotic drugs to that of first generation drugs. The newer antipsychotics appear to have a substantially reduced potential for causing tardive dyskinesia. However, some studies express concern that the prevalence rate has decreased far less than expected, cautioning against the overestimation of the safety of modern antipsychotics.
A physician can evaluate and diagnose a patient with tardive dyskinesia by conducting a systematic examination. The physician should ask the patient to relax, and look for symptoms like facial grimacing, eye or lip movements, tics, respiratory irregularities, and tongue movements. In some cases, patients experience nutritional problems, so a physician can also look for a gain or loss in weight.
Apart from the underlying psychiatric disorder, tardive dyskinesia may cause afflicted people to become socially isolated. It also increases the risk of dysmorphophobia and can even lead to suicide. Emotional or physical stress can increase the severity of dyskinetic movements, whereas relaxation and sedation have the opposite effect.
Published epidemiological data for akathisia are mostly limited to treatment periods preceding the arrival of second-generation antipsychotics. Sachdev (1995) reported an incidence rate of acute akathisia of 31% for 100 patients treated for 2 weeks with antipsychotic medications. Sachdev (1995) reported a prevalence range from 0.1% to 41%. In all likelihood, rates of prevalence are lower for current treatment as second-generation antipsychotics carry a lower risk of akathisia.
Extrapyramidal symptoms are most commonly caused by typical antipsychotic drugs that antagonize dopamine D2 receptors. The most common typical antipsychotics associated with EPS are haloperidol and fluphenazine. Atypical antipsychotics have lower D2 receptor affinity or higher serotonin 5-HT2A receptor affinity which lead to lower rates of EPS. However, some research has shown that atypical antipsychotics are just as likely as conventional antipsychotics to cause EPS.
Other anti-dopaminergic drugs, like the antiemetic metoclopramide, can also result in extrapyramidal side effects. Short and long-term use of antidepressants such as selective serotonin reuptake inhibitors (SSRI), serotonin-norepinephrine reuptake inhibitors (SNRI), and norepinephrine-dopamine reuptake inhibitors (NDRI) have also resulted in EPS. Specifically, duloxetine, sertraline, escitalopram, fluoxetine, and bupropion have been linked to the induction of EPS. Other causes of extrapyramidal symptoms can include brain damage and meningitis.
Two other types, primary ciliary dyskinesia and biliary dyskinesia, are caused by specific kinds of ineffective movement of the body, and are not movement disorders.
Spastic thrusting of hip area can occur in Sodemytopic Parkinson's.
Anticholinergic drugs are used to control neuroleptic-induced EPS, although akathisia may require beta blockers or even benzodiazepines. If the EPS are induced by an antipsychotic, EPS may be reduced by dose titration or by switching to an atypical antipsychotic, such as aripiprazole, ziprasidone, quetiapine, olanzapine, risperidone, or clozapine. These medications possess an additional mode of action that is believed to negate their effect on the nigrostriatal pathway, which means they are associated with fewer extrapyramidal side-effects than "conventional" antipsychotics (chlorpromazine, haloperidol, etc.), although some research has shown that second generation neuroleptics cause EPS at the same rate as the first generation drugs.
Commonly used medications for EPS are anticholinergic agents such as benztropine (Cogentin), diphenhydramine (Benadryl), and trihexyphenidyl (Artane). Another common course of treatment includes dopamine agonist agents such as pramipexole. These medications reverse the symptoms of extrapyramidal side effects caused by antipsychotics or other drugs that either directly or indirectly inhibit dopaminergic neurotransmission.
Studies are yet to be undertaken on the optimum dosage of the causative drugs to reduce their side effects (extrapyramidal symptoms (EPS)).
Pisa syndrome is predominantly caused by a prolonged administration or an overly dosed administration of antipsychotic drugs. Although antipsychotic drugs are known to be the main drugs that are concerned with this syndrome, several other drugs are reported to have caused the syndrome as well. Certain antidepressants, psychoactive drugs, and antiemetics have also been found to cause Pisa syndrome in patients.
Drugs found to have caused Pisa Syndrome:
- Atypical antipsychotic drugs- ex. clozapine, aripiprazole
- Tricyclic antidepressants- ex. clomipramine
- Psychoactive drugs
- Antiemetic drugs
- Cholinesterase inhibitors
- Galantamine
Based on the drugs that caused Pisa syndrome, it has been implicated that the syndrome may be due to a dopaminergic-cholinergic imbalance or a serotonergic or noradrenergic dysfunction. For the development of Pisa syndrome that cannot be alleviated by anticholinergic drugs, it has been considered that asymmetric brain functions or neural transmission may be the underlying mechanism. How these drugs interact with the biochemistry of the brain to cause the syndrome is unknown and a topic of current research.
Paroxysmal Dyskinesia is not a fatal disease. Life can be extremely difficult with this disease depending on the severity. The prognosis of PD is extremely difficult to determine because the disease varies from person to person. The attacks for PKD can be reduced and managed with proper anticonvulsants, but there is no particular end in sight for any of the PD diseases. PKD has been described to cease for some patients after the age of 20, and two patients have reported to have a family history of the disease where PKD went into complete remission after the age of 23. With PNKD and PED, at this time, there is no proper way to determine an accurate prognosis.
Anticholinergic drugs have been reported to be extremely effective in 40% of the patients with the Pisa syndrome. Patients with Pisa syndrome that is resistant to anticholinergic drugs is mostly resolved by the reduction of the administration of the antipsychotic drugs as previously mentioned. While the specific pathology underlying idiopathic Pisa syndrome is unknown, the administration of anticholinergic drugs has provided resolution in known cases.
All PD associated subtypes have genetic contributions and are likely to run in a families genetic history due to dominant allele mutations. Mutations of identified genes have been leading areas of research in the study and treatment of paroxysmal dyskinesia. PKD, PNKD, and PED are classified as separate subtypes because they all have different presentations of symptoms, but also, because they are believed to have different pathologies.
Interestingly, studies on diseases that are similar in nature to PD have revealed insights into the causes of movement disorders. Hypnogenic paroxysmal dyskinesia is a form of epilepsy affecting the frontal lobe. Single genes have been identified on chromosomes 15, 20, and 21, which contribute to the pathology of these epilepsy disorders. Utilizing new knowledge about pathologies of related and similar disease can shed insight on the causal relationships in paroxysmal dyskinesia.
Akathisia is frequently associated with the use of dopamine receptor antagonist antipsychotic drugs. Understanding is still limited on the pathophysiology of akathisia, but it is seen to be associated with medications which block dopaminergic transmission in the brain. Additionally, drugs with successful therapeutic effects in the treatment of medication-induced akathisia have provided additional insight into the involvement of other transmitter systems. These include benzodiazepines, β-adrenergic blockers, and serotonin antagonists. Another major cause of the syndrome is the withdrawal observed in drug dependent individuals. Since dopamine deficiency (or disruptions in dopamine signalling) appears to play an important role in the development of RLS, a form of akathisia focused in the legs, the sudden withdrawal or rapidly decreased dosage of drugs which increase dopamine signalling may create similar deficits of the chemical which mimic dopamine antagonism and thus can precipitate RLS. This is why sudden cessation of opioids, cocaine, serotonergics, and other euphoria-inducing substances commonly produce RLS as a side-effect.
It has been correlated with Parkinson's disease and related syndromes. It is unclear, however, whether this is due more to Parkinson's or the drugs used to treat it, such as carbidopa/levodopa (levocarb).
Antidepressants can also induce the appearance of akathisia, due to increased serotonin signalling within the central nervous system. This also explains why serotonin antagonists are often a very effective treatment.
The 2006 UK study by Healy et al. observed that akathisia is often miscoded in antidepressant clinical trials as "agitation, emotional lability, and hyperkinesis (overactivity)". The study further points out that misdiagnosis of akathisia as simple motor restlessness occurs, but that this is more properly classed as dyskinesia.
It was discovered that akathisia involves increased levels of the neurotransmitter norepinephrine, which is associated with mechanisms that regulate aggression, alertness, and arousal.
The table below summarizes factors that can induce akathisia, grouped by type, with examples or brief explanations for each:
Paroxysmal kinesigenic dyskinesia has been shown to be inherited in an autosomal dominant fashion. In 2011, the PRRT2 gene on chromosome 16 was identified as the cause of the disease. The researchers looked at the genetics of eight families with strong histories of PKD. They employed whole genome sequencing, along with Sanger sequencing to identify the gene that was mutated in these families. The mutations in this gene included a nonsense mutation identified in the genome of one family and an insertion mutation identified in the genome of another family. The researchers then confirmed this gene as the cause of PKD when it was not mutated in the genome of 1000 control patients. Researchers found PRRT2 mutations in 10 of 29 sporadic cases affected with PKD, thus suggests PRRT2 is the gene mutated in a subset of PKD and PKD is genetically heterogeneous. The mechanism of how PRRT2 causes PKD still requires further investigation. However, researchers suggest it may have to do with PRRT2's expression in the basal ganglia, and the expression of an associated protein, SNAP25, in the basal ganglia as well.
Late-onset dyskinesia, also known as tardive dyskinesia, occurs after long-term treatment with an antipsychotic drug such as haloperidol (Haldol) or amoxapine (Asendin). The symptoms include tremors and writhing movements of the body and limbs, and abnormal movements in the face, mouth, and tongue including involuntary lip smacking, repetitive pouting of the lips, and tongue protrusions.
Rabbit syndrome is another type of chronic dyskinesia, while orofacial dyskinesia may be related to persistent replication of Herpes simplex virus type 1.
Paroxysmal kinesigenic choreathetosis (PKC) also called paroxysmal kinesigenic dyskinesia (PKD) is a hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can increase during puberty and decrease in a person's 20s to 30s. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular. This rare disorder only affects about 1 in 150,000 people with PKD accounting for 86.8% of all the types of paroxysmal dyskinesias and occurs more often in males than females. There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, hypocalcemia, hypoglycemia, hyperglycemia, central nervous system trauma, or peripheral nervous system trauma. PKD has also been linked with infantile convulsions and choreoathetosis (ICCA) syndrome, in which patients have afebrile seizures during infancy (benign familial infantile epilepsy) and then develop paroxysmal choreoathetosis later in life. This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child.
Tardive dysphrenia, was proposed by the American neurologist Stanley Fahn, the head of the Division of Movements Disorders of the Neurological Institute of New York, in collaboration with the psychiatrist David V Forrest in the 1970s.
It originally was linked to a unique, rare, behavioral/mental neuroleptic drug-induced tardive syndrome observed in psychiatric patients (schizophrenia in particular) treated with the typical antipsychotic drugs or neuroleptics. Tardive dysphrenia is one of many neuroleptic-induced tardive syndromes, including tardive dyskinesia and the other already-recognized tardive dystonia, and tardive akathisia.
More recently, the Brazilian psychiatrist Leopoldo Hugo Frota, Adjunct Professor of Psychiatry at Federal University of Rio de Janeiro, extended the original Fahn's construct to enclose the — independently described but etiologically related concepts of — rebound psychosis, supersensitivity psychosis (Guy Chouinard) and schizophrenia pseudo-refractoriness (Heinz Lehmann & Thomas Ban) or secondary acquired refractoriness.
There is some disagreement in the psychiatric community regarding the diagnosis of tardive dysphrenia. Therefore, the following description should be considered general and tentative.
The cause of all these syndromes was ascribed by Frota to an adaptative, but extreme and long-lasting up-regulation of the dopaminergic mesolimbic pathway D2-like receptor. He also emphasized the outstanding role of modern second-generation atypical antipsychotic drugs with predominant actions on the dopaminergic mesolimbic pathway differently from the typical ones, which act chiefly on the nigrostriatal pathway .
Drugs that can trigger an oculogyric crisis include neuroleptics (such as haloperidol, chlorpromazine, fluphenazine, olanzapine), carbamazepine, chloroquine, cisplatin, diazoxide, levodopa, lithium, metoclopramide, lurasidone, domperidone, nifedipine, pemoline, phencyclidine ("PCP"), reserpine, and cetirizine, an antihistamine. High-potency neuroleptics are probably the most common cause in the clinical setting.
Other causes can include postencephalitic Parkinson's, Tourette's syndrome, multiple sclerosis, neurosyphilis, head trauma, bilateral thalamic infarction, lesions of the fourth ventricle, cystic glioma of the third ventricle, herpes encephalitis, kernicterus and juvenile Parkinson's.
There are very few reported cases of PED, there are approximately 20 reported sporadic cases of PED and 9 PED families but there is some dispute on the exact number of cases. In addition it appears that PED becomes less severe with aging. Prior to onset of a PED episode some patients reported onset of symptoms including sweating, pallor, and hyperventilation. In brain scans it was observed that patients suffering form frequent PEDs there was increased metabolism in the putamen of the brain and decreased metabolism in the frontal lobe. Another study using subtraction single photon emission computed tomographic (SPECT) imaging technique which was coregistered with an MRI on a patient presented with PED symptoms showed increased cerebral perfusion in the primary somatosensory cortex area, and a mild increase in the region of the primary motor cortex and cerebellum. While all these correlations are not fully understand as to what exactly is happening in the brain it provides areas of interest to study further to hopefully understand PED more fully.
Choreoathetosis is the occurrence of involuntary movements in a combination of chorea (irregular migrating contractions) and athetosis (twisting and writhing).
It is caused by many different diseases and agents. It is a symptom of several diseases, including Lesch-Nyhan Syndrome, phenylketonuria, and Huntington disease.
Choreoathetosis is also a common presentation of dyskinesia as a side effect of levodopa-carbidopa in the treatment of Parkinson disease.
In most cases, PED is familial, but can also be sporadic. In familial cases, pedigrees examined have shown PED to be an autosomal-dominant inheritance trait. PED also has been associated with Parkinson's disease, epilepsy and migraines, although the exact relationship between these is unknown.
A suspected contributor to familial PED is a mutation in the GLUT1 gene, SLC2A1, which codes for the transporter GLUT1, a protein responsible for glucose entry across the blood–brain barrier. It is not thought that the mutation causes a complete loss of function of the protein but rather only slightly reduces the transporter's activity. In a study of PED patients, a median CSF/blood glucose ratio of .52 compared to a normal .60 was found. In addition, reduced glucose uptake by mutated transporters compared with wild-type in Xenopus oocytes confirmed a pathogenic role of these mutations.
Another recent study was performed to continue to look at the possible connection between PED and mutations on the SLC2A1 gene which codes for the GLUT1 transporter. While PED can occur in isolation it was also noted that it occurs in association with epilepsy as well. In this study the genetics of a five-generation family with history of PED and epilepsy were evaluated. From the results it was noted that most of the mutations were due to frameshift and missense mutations. When looking at homologous GLUT1 transporters in other species it was noted that serine (position 95), valine (position 140), and asparagine (position 317) were highly conserved and therefore mutations in these residues would most likely be pathogenic. Therefore, these are areas of interest when looking at what could lead to PED.All mutations that were observed appeared to only affect the ability of GLUT1 to transport glucose and not the ability for it to be inserted in the membrane. The observed maximum transport velocity of glucose was reduced anywhere from 3 to 10 fold.
A study was performed to determine if the mutation known for the PNKD locus on chromosome 2q33-35 was the cause of PED. In addition, other loci were observed such as the familial hemiplegic migraine (FHM) locus on chromosome 19p, or the familial infantile convulsions and paroxysmal choreoathetosis (ICCA). All three of these suspected regions were found to not contain any mutations, and were therefore ruled out as possible candidates for a cause of PED.
Parkinsonism is a clinical syndrome characterized by tremor, bradykinesia, rigidity, and postural instability. Parkinsonism is found in Parkinson's disease (after which it is named), however a wide range of other causes may lead to this set of symptoms, including some toxins, a few metabolic diseases, and a handful of neurological conditions other than Parkinson's disease.
About 7% of people with parkinsonism have developed their symptoms following treatment with particular medications. Side effect of medications, mainly neuroleptic antipsychotics especially the phenothiazines (such as perphenazine and chlorpromazine), thioxanthenes (such as flupenthixol and zuclopenthixol) and butyrophenones (such as haloperidol), piperazines (such as ziprasidone), and rarely, antidepressants. The incidence of drug-induced parkinsonism increases with age. Drug-induced parkinsonism tends to remain at its presenting level, not progress like Parkinson's disease.
Differentiating some kinds of atypical Parkinson: Northwest Parkinson Foundation
Before Parkinson's disease is diagnosed, the differential diagnoses include:
- AIDS can sometimes lead to the symptoms of secondary parkinsonism, due to commonly causing dopaminergic dysfunction. Indeed, parkinsonism can be a presenting feature of HIV infection.
- Corticobasal degeneration
- Creutzfeldt–Jakob disease
- Dementia pugilistica or "boxer's dementia" is a condition that occurs in athletes due to chronic brain trauma.
- Diffuse Lewy body disease
- Drug-induced parkinsonism ("pseudoparkinsonism") due to drugs such as antipsychotics, metoclopramide, sertraline, fluoxetine or the toxin MPTP
- Encephalitis lethargica
- Essential tremor, an illness which has some diagnostic overlap with Parkinson's disease
- Orthostatic tremor
- MDMA addiction and frequent use has been linked to Parkonsonism. Several cases have been reported where individuals are diagnosed with the syndrome after taking MDMA.
- Multiple system atrophy
- Pantothenate kinase-associated neurodegeneration, also known as neurodegeneration with brain iron accumulation or Hallervorden-Spatz syndrome
- Parkinson plus syndrome
- Progressive supranuclear palsy
- Toxicity due to substances such as carbon monoxide, carbon disulfide, manganese, paraquat, mercury, hexane, rotenone, Annonaceae, and toluene (inhalant abuse: "huffing")
- Vascular parkinsonism, associated with underlying cerebrovascular disease
- Wilson's disease is a genetic disorder in which an abnormal accumulation of copper occurs. The excess copper can lead to the formation of a copper-dopamine complex, which leads to the oxidation of dopamine to aminochrome. The most common manifestations include bradykinesia, cogwheel rigidity and a lack of balance.
- Paraneoplastic syndrome: neurological symptoms caused by antibodies associated with cancers
- Genetic
- Rapid onset dystonia parkinsonism
- Parkin mutation
- X-linked dystonia parkinsonism
- Autosomal recessive juvenile parkinsonism
Movement disorders are clinical syndromes with either an excess of movement or a paucity of voluntary and involuntary movements, unrelated to weakness or spasticity. Movement disorders are synonymous with basal ganglia or extrapyramidal diseases. Movement disorders are conventionally divided into two major categories- "hyperkinetic" and "hypokinetic".
Hyperkinetic movement disorders refer to dyskinesia, or excessive, often repetitive, involuntary movements that intrude upon the normal flow of motor activity.
Hypokinetic movement disorders refer to akinesia (lack of movement), hypokinesia (reduced amplitude of movements), bradykinesia (slow movement) and rigidity. In primary movement disorders, the abnormal movement is the primary manifestation of the disorder. In secondary movement disorders, the abnormal movement is a manifestation of another systemic or neurological disorder.
Adiadochokinesia is a dyskinesia consisting of inability to perform the rapid alternating movements of diadochokinesia. Called also "adiadochocinesia", "adiadochokinesis", and "adiadokokinesia".
Compare with dysdiadochokinesia, which is an impairment of the ability to perform rapidly alternating movements.
Treatment depends upon the underlying disorder. Movement disorders have been known to be associated with a variety of autoimmune diseases.