Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Complications of benzodiazepine abuse include drug-related deaths due to overdose especially in combination with other depressant drugs such as opioids. Other complications include: blackouts and memory loss, paranoia, violence and criminal behaviour, risk-taking sexual behaviour, foetal and neonatal risks if taken in pregnancy, dependence, withdrawal seizures and psychosis. Injection of the drug carries risk of: thrombophlebitis, deep vein thrombosis, deep and superficial abscesses, pulmonary microembolism, rhabdomyolysis, tissue necrosis, gangrene requiring amputation, hepatitis B and C, as well as blood borne infections such as HIV infection (caused by sharing injecting equipment). Long-term use of benzodiazepines can worsen pre-existing depression and anxiety and may potentially also cause dementia with impairments in recent and remote memory functions.
Use is widespread among amphetamine users, with those that use amphetamines and benzodiazepines having greater levels of mental health problems and social deterioration. Benzodiazepine injectors are almost four times more likely to inject using a shared needle than non-benzodiazepine-using injectors. It has been concluded in various studies that benzodiazepine use causes greater levels of risk and psycho-social dysfunction among drug misusers.
Poly-drug users who also use benzodiazepines appear to engage in more frequent high-risk behaviors. Those who use stimulant and depressant drugs are more likely to report adverse reactions from stimulant use, more likely to be injecting stimulants and more likely to have been treated for a drug problem than those using stimulant but not depressant drugs.
Individuals with a substance abuse history are at an increased risk of misusing benzodiazepines.
Several (primary research) studies, even into the last decade, claimed, that individuals with a history of familial abuse of alcohol or who are siblings or children of alcoholics appeared to respond differently to benzodiazepines than so called "genetically healthy" persons, with males experiencing increased euphoric effects and females having exaggerated responses to the adverse effects of benzodiazepines.
Whilst all benzodiazepines have abuse potential, certain characteristics increase the potential of particular benzodiazepines for abuse. These characteristics are chiefly practical ones—most especially, availability (often based on popular perception of 'dangerous' versus 'non-dangerous' drugs) through prescribing physicians or illicit distributors. Pharmacological and pharmacokinetic factors are also crucial in determining abuse potentials. A short elimination half-life, high potency and a rapid onset of action are characteristics which increase the abuse potential of benzodiazepines. The following table provides the elimination half-life, relevant potency to other benzodiazepines, speed of onset of action and duration of behavioural effects.
A neonatal withdrawal syndrome, sometimes severe, can occur when the mother had taken benzodiazepines, especially during the third trimester. Symptoms include hypotonia, apnoeic spells, cyanosis, and impaired metabolic responses to cold stress and seizures. The neonatal benzodiazepine withdrawal syndrome has been reported to persist from hours to months after birth.
A withdrawal syndrome is seen in about 20% of pediatric intensive care unit children after infusions with benzodiazepines or opioids. The likelihood of having the syndrome correlates with total infusion duration and dose, although duration is thought to be more important. Treatment for withdrawal usually involves weaning over a 3- to 21-day period if the infusion lasted for more than a week. Symptoms include tremors, agitation, sleeplessness, inconsolable crying, diarrhea and sweating. In total, over fifty withdrawal symptoms are listed in this review article. Environmental measures aimed at easing the symptoms of neonates with severe abstinence syndrome had little impact, but providing a quiet sleep environment helped in mild cases.
Tachyphylaxis is a subcategory of drug tolerance referring to cases of sudden, short-term onset of tolerance following the administration of a drug.
The severity and length of the withdrawal syndrome is likely determined by various factors, including rate of tapering, length of use and dosage size, and possible genetic factors. Those who have a prior history of withdrawing from benzodiazepines may have a sensitized or kindled central nervous system leading to worsening cognition and symptomatology, and making each subsequent withdrawal period worse.
Research studies have come to different conclusions on the number of therapeutic dose users who develop a physical dependence and withdrawal syndrome. Estimates by researchers of the number of people affected range 20–100% of patients prescribed benzodiazepines at therapeutic dosages long term are physically dependent and will experience withdrawal symptoms.
Benzodiazepines can be addictive and induce dependence even at low doses, with 23% becoming addicted within 3 months of use. Benzodiazepine addiction is considered a public health problem. Approximately 68.5% of prescriptions of benzodiazepines originate from local health centers, with psychiatry and general hospitals accounting for 10% each. A survey of general practitioners reported that the reason for initiating benzodiazepines was due to an empathy for the patients suffering and a lack of other therapeutic options rather than patients demanding them. However, long-term use was more commonly at the insistence of the patient, it is presumed, because physical dependence or addiction had developed.
Approximately twice as many women as men are prescribed benzodiazepines. It is believed that this is largely because men typically turned to alcohol to cope with stress and women to prescription drugs. Biased perception of women by male doctors may also play a role in increased prescribing rates to women; however, increased anxiety features in women does not account for the wide gap alone between men and women.
A study published in the British Journal of General Practice in July 2017 found that in a sample taken from a survey conducted in 2014–2015 in Bradford a mean of 0.69% of registered patients had been prescribed benzodiazepines for more than a year. This would suggest that there were around 300,000 long-term users of diazepine in the UK.
Drug tolerance is a pharmacological concept describing subjects' reduced reaction to a drug following its repeated use. Increasing its dosage may re-amplify the drug's effects, however this may accelerate tolerance, further reducing the drug's effects. Drug tolerance is indicative of drug use but is not necessarily associated with drug dependence or addiction. The process of tolerance development is reversible (e.g., through a drug holiday) and can involve both physiological factors and psychological factors.
One may also develop drug tolerance to side effects, in which case tolerance is a desirable characteristic. A medical intervention that has for objective to increase tolerance (e.g., allergen immunotherapy, in which one is exposed to larger and larger amounts of allergen to decrease one's allergic reactions) is called drug desensitization.
The opposite concept to drug tolerance is drug reverse tolerance (or drug sensitization), in which case the subject's reaction or effect will increase following its repeated use. The two notions are not incompatible and tolerance may sometimes lead to reverse tolerance. For example, heavy drinkers initially develop tolerance to alcohol (requiring them to drink larger amounts to achieve a similar effect) but excessive drinking can cause liver damage, which then puts them at risk of intoxication when drinking even very small amounts of alcohol.
Drug tolerance should not be confused with drug tolerability, which refers to the degree to which overt adverse effects of a drug can be tolerated by a patient.
Sending a letter to patients warning of the adverse effects of long-term use of benzodiazepines and recommending dosage reduction has been found to be successful and a cost-effective strategy in reducing benzodiazepine consumption in general practice. Within a year of the letter's going out, there was found to be a 17% fall in the number of benzodiazepines being prescribed, with 5% of patients having totally discontinued benzodiazepines. A study in the Netherlands reported a higher success rate by sending a letter to patients who are benzodiazepine-dependent. The results of the Dutch study reported 11.3% of patients discontinuing benzodiazepines completely within a year.
Treatment for physical dependence depends upon the drug being withdrawn and often includes administration of another drug, especially for substances that can be dangerous when abruptly discontinued or when previous attempts have failed. Physical dependence is usually managed by a slow dose reduction over a period of weeks, months or sometimes longer depending on the drug, dose and the individual. A physical dependence on alcohol is often managed with a cross tolerant drug, such as long acting benzodiazepines to manage the alcohol withdrawal symptoms.
The use of stimulants in humans causes rapid weight loss, cardiovascular effects such as an increase in heart rate, respirations and blood pressure, emotional or mental side effects such as paranoia, anxiety, and aggression, as well as a change in the survival pathway known as the reward/reinforcement pathway in our brain. An increase in energy, a reduced appetite, increased alertness and a boost in confidence are all additional side effects of stimulant use when introduced to the body.
A wide range of drugs whilst not causing a true physical dependence can still cause withdrawal symptoms or rebound effects during dosage reduction or especially abrupt or rapid withdrawal. These can include caffeine, stimulants, steroidal drugs and antiparkinsonian drugs. It is debated if the entire antipsychotic drug class causes true physical dependency, if only a subset does, or if none do, but all, if discontinued too rapidly, cause an acute withdrawal syndrome. When talking about illicit drugs rebound withdrawal is, especially with stimulants, sometimes referred to as "coming down" or "crashing".
Some drugs, like anticonvulsants and antidepressants, describe the drug category and not the mechanism. The individual agents and drug classes in the anticonvulsant drug category act at many different receptors and it is not possible to generalize their potential for physical dependence or incidence or severity of rebound syndrome as a group so they must be looked at individually. Anticonvulsants as a group however are known to cause tolerance to the anti-seizure effect. SSRI drugs, which have an important use as antidepressants, engender a discontinuation syndrome that manifests with physical side effects. E.g., There have been case reports of a discontinuation syndrome with venlafaxine (Effexor).
A number of groups have been identified as being at greater risk of developing cannabis dependence and include adolescent populations, Aboriginal and Torres Strait Islanders (in Australia) and people suffering from mental health conditions.
The symptoms of stimulant use disorder include failure to control usage and frequency of use, an intense craving for the drug, increased use over time to obtain the same effects, known as a developed tolerance, and a continued use despite negative repercussions and interference in one’s everyday life and functioning. Furthermore, a disorder is noted when withdrawal symptoms occur because of a decrease in the drug amount and frequency, as well as stopping the use of the drug entirely. These withdrawal symptoms can last for days, weeks, months, and on rare occasions, years, depending on the frequency and dosages used by the individual. These symptoms include, but are not limited to, increased appetite, decreased energy, depression, loss of motivation and interest in once pleasurable activities, anxiety, insomnia, agitation and an intense craving for the drug. Unless intensive medical and psychological treatment is sought after, there is a very high likelihood of relapse among the user.
The tolerance to alcohol is not equally distributed throughout the world's population, and genetics of alcohol dehydrogenase indicate resistance has arisen independently in different cultures. In North America, Native Americans have the highest probability of developing alcoholism compared to Europeans and Asians.
Higher body masses and the prevalence of high levels of alcohol dehydrogenase in an individual increase alcohol tolerance.
Not all differences in tolerance can be traced to biochemistry. Differences in tolerance levels are also influenced by socio-economic and cultural difference including diet, average body weight and patterns of consumption.
An estimated one out of twenty people have an alcohol flush reaction. It is not in any way an indicator for the drunkenness of an individual. It is colloquially known as "face flush", a condition where the body metabolizes alcohol nearly 100-times less efficiently into acetaldehyde, a toxic metabolite. Flushing, or blushing, is associated with the erythema (reddening caused by dilation of capillaries) of the face, neck, and shoulder, after consumption of alcohol.
Direct alcohol tolerance is largely dependent on body size. Large-bodied people will require more alcohol to reach insobriety than lightly built people. Thus men, being larger than women on average, will have a higher alcohol tolerance. The alcohol tolerance is also connected with activity of "alcohol dehydrogenases" (a group of enzymes responsible for the breakdown of alcohol) in the liver, and in the bloodstream.
High level of alcohol dehydrogenase activity results in fast transformation of ethanol to more toxic acetaldehyde. Such atypical alcohol dehydrogenase levels are less frequent in alcoholics than in nonalcoholics and, alongside other symptoms, can indicate various forms of liver disease. Furthermore, among alcoholics, the carriers of this atypical enzyme consume lower ethanol doses, compared to the individuals without the allele.
The various benzodiazepines differ in their toxicity since they produce varying levels of sedation in overdose. A 1993 British study of deaths during the 1980s found flurazepam and temazepam more frequently involved in drug-related deaths, causing more deaths per million prescriptions than other benzodiazepines. Flurazepam, now rarely prescribed in the United Kingdom and Australia, had the highest fatal toxicity index of any benzodiazepine (15.0), followed by temazepam (11.9), versus benzodiazepines overall (5.9), taken with or without alcohol. An Australian (1995) study found oxazepam less toxic and less sedative, and temazepam more toxic and more sedative, than most benzodiazepines in overdose. An Australian study (2004) of overdose admissions between 1987 and 2002 found alprazolam, which happens to be the most prescribed benzodiazepine in the U.S. by a large margin, to be more toxic than diazepam and other benzodiazepines. They also cited a review of the Annual Reports of the American Association of Poison Control Centers National Data Collection System, which showed alprazolam was involved in 34 fatal deliberate self-poisonings over 10 years (1992–2001), compared with 30 fatal deliberate self-poisonings involving diazepam. In a New Zealand study (2003) of 200 deaths, Zopiclone, a benzodiazepine receptor agonist, had similar overdose potential as benzodiazepines.
Cross-tolerance is a phenomenon that occurs when tolerance to the effects of a certain drug produces tolerance to another drug. It often happens between two drugs with similar functions or effects – for example, acting on the same cell receptor or affecting the transmission of certain neurotransmitters. Cross-tolerance has been observed with pharmaceutical drugs such as anti-anxiety agents and illicit substances, and sometimes the two of them together. Often, a person who uses one drug can be tolerant to a drug that has a completely different function. This phenomenon allows one to become tolerant to a drug that they have never even used before.
The UK Food Standards Agency has recommended that pregnant women should limit their caffeine intake, out of prudence, to less than 200 mg of caffeine a day – the equivalent of two cups of instant coffee, or one and a half to two cups of fresh coffee. The American Congress of Obstetricians and Gynecologists (ACOG) concluded in 2010 that caffeine consumption is safe up to 200 mg per day in pregnant women. For women who breastfeed, are pregnant, or may become pregnant, Health Canada recommends a maximum daily caffeine intake of no more than 300 mg, or a little over two 8 oz (237 mL) cups of coffee.
The evidence for or against the importance of limiting caffeine intake during pregnancy is insufficient and of low quality. There are conflicting reports in the scientific literature about caffeine consumption during pregnancy. A 2011 risk analysis review found that caffeine consumption during pregnancy does not appear to increase the risk of congenital malformations, miscarriage or growth retardation even when consumed in moderate to high amounts. There is some evidence that the hormonal changes during pregnancy slow the metabolic clearance of caffeine from the system, causing a given dose to have longer-lasting effects (as long as 15 hours in the third trimester). There is some evidence that higher caffeine intake by pregnant women may be associated with a higher risk of giving birth to a low birth weight baby, and may be associated with a higher risk of pregnancy loss. A systematic review, analyzing the results of observational studies, suggests that women who consume large amounts of caffeine (greater than 300 mg/day) prior to becoming pregnant may have a higher risk of experiencing pregnancy loss.
About 12% of American adults have had an alcohol dependence problem at some time in their life. In the UK the NHS estimates that around 9% of men and 4% of UK women show signs of alcohol dependence.
In a Swedish (2003) study benzodiazepines were implicated in 39% of suicides by drug poisoning in the elderly 1992-1996. Nitrazepam and flunitrazepam accounted for 90% of benzodiazepine implicated suicides. In cases where benzodiazepines contributed to death, but were not the sole cause, drowning, typically in the bath, was a common method used. Benzodiazepines were the predominant drug class in suicides in this review of Swedish death certificates. In 72% of the cases, benzodiazepines were the only drug consumed. Thus, many of deaths associated with benzodiazepine overdoses may not be a direct result of the toxic effects but either due to being combined with other drugs or used as a tool to complete suicide using a different method, e.g. drowning.
In a Swedish retrospective study of deaths of 1987, in 159 of 1587 autopsy cases benzodiazepines were found. In 44 of these cases the cause of death was natural causes or unclear. The remaining 115 deaths were due to accidents (N = 16), suicide (N = 60), drug addiction (N = 29) or alcoholism (N = 10). In a comparison of suicides and natural deaths, the concentrations both of flunitrazepam and nitrazepam (sleeping medications) were significantly higher among the suicides.
In four cases benzodiazepines were the sole cause of death.
In Australia, a study of 16 deaths associated with toxic concentrations of benzodiazepines during the period of 5 years leading up to July 1994 found preexisting natural disease as a feature of 11 cases; 14 cases were suicides. Cases where other drugs, including ethanol, had contributed to the death were excluded. In the remaining five cases, death was caused solely by benzodiazepines. Nitrazepam and temazepam were the most prevalent drugs detected, followed by oxazepam and flunitrazepam. A review of self poisonings of 12 months 1976 - 1977 in Auckland, New Zealand, found benzodiazepines implicated in 40% of the cases. A 1993 British study found flurazepam and temazepam to have the highest number of deaths per million prescriptions among medications commonly prescribed in the 1980s. Flurazepam, now rarely prescribed in the United Kingdom and Australia, had the highest fatal toxicity index of any benzodiazepine (15.0) followed by Temazepam (11.9), versus 5.9 for benzodiazepines overall, taken with or without alcohol.
Young people are at greater risk of developing cannabis dependency because of the association between early initiation into substance use and subsequent problems such as dependence, and the risks associated with using cannabis at a developmentally vulnerable age. In addition there is evidence that cannabis use during adolescence, at a time when the brain is still developing, may have deleterious effects on neural development and later cognitive functioning.
ICD–10 criteria for dependence include experience of at least three of the following during the past year:
- a strong desire to take steroids
- difficulty in controlling use
- withdrawal syndrome when use is reduced
- evidence of tolerance
- neglect of other interests and persistent use despite harmful consequences
However, the following ICD-10-CM Index entries contain back-references to ICD-10-CM F55.3:
- Abuse
- hormones F55.5
- steroids F55.5
- drug NEC (non-dependent) F19.10
- hormones F55.5
- steroids F55.5
- non-psychoactive substance NEC F55.8
- hormones F55.5
- steroids F55.5
ICD-10 goes on to state that “although it is usually clear that the patient has a strong motivation to take the substance, there is no development of dependence or withdrawal symptoms as in the case of the psychoactive substances.”
Opioid use disorder can develop as a result of self-medication, though this is controversial. Scoring systems have been derived to assess the likelihood of opiate addiction in chronic pain patients.
According to position papers on the treatment of opioid dependence published by the United Nations Office on Drugs and Crime and the World Health Organization, care providers should not treat opioid use disorder as the result of a weak character or will. Additionally, detoxification alone does not constitute adequate treatment.
Health Canada has not developed advice for adolescents because of insufficient data. However, they suggest that daily caffeine intake for this age group be no more than 2.5 mg/kg body weight. This is because the maximum adult caffeine dose may not be appropriate for light weight adolescents or for younger adolescents who are still growing. The daily dose of 2.5 mg/kg body weight would not cause adverse health effects in the majority of adolescent caffeine consumers. This is a conservative suggestion since older and heavier weight adolescents may be able to consume adult doses of caffeine without suffering adverse effects.
The National Institute on Drug Abuse (NIDA) says that "even though anabolic steroids do not cause the same high as other drugs, steroids are reinforcing and can lead to addiction. Studies have shown that animals will self-administer steroids when given the opportunity, just as they do with other addictive drugs. People may persist in abusing steroids despite physical problems and negative effects on social relationships, reflecting these drugs’ addictive potential. Also, steroid abusers typically spend large amounts of time and money obtaining the drug; another indication of addiction. Individuals who abuse steroids can experience withdrawal symptoms when they stop taking them, including mood swings, fatigue, restlessness, loss of appetite, insomnia, reduced sex drive, and steroid cravings, all of which may contribute to continued abuse. One of the most dangerous withdrawal symptoms is depression. When depression is persistent, it can sometimes lead to suicidal thoughts. Research has found that some steroid abusers turn to other drugs such as opioids to counteract the negative effects of steroids."