Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While the exact incidence is unknown, estimates range from 33 - 57 percent of patients staying in the ICU for longer than 7 days. More exact data is difficult to obtain, since variation exists in defining the condition.
The three main risk factors for CIP and CIM are sepsis and systemic inflammatory response syndrome (SIRS), and multi-organ failure. Reported rates of CIP/CIM in people with sepsis and SIRS range from 68 to 100 percent. Additional risk factors for developing CIP/CIM include: female gender, high blood sugar (hyperglycemia), low serum albumin, and immobility. A greater severity of illness increases the risk of CIP/CIM. Such risk factors include: multi-organ dysfunction, renal failure, renal replacement therapy, duration of organ dysfunction, duration of ICU stay, low albumin, and central neurologic failure.
Certain medications are associated with CIP/CIM, such as corticosteroids, neuromuscular blocking agents, vasopressors, catecholamines, and intravenous nutrition (parenteral nutrition). Research has produced inconsistent results for the impact of hypoxia, hypotension, hyperpyrexia, and increased age on the risk of CIP/CIM. The use of aminoglycosides is "not" an independent risk for the development of CIP/CIM.
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
The Food and Drug Administration is recommending that physicians restrict prescribing high-dose Simvastatin (Zocor, Merck) to patients, given an increased risk of muscle damage. The FDA drug safety communication stated that physicians should limit using the 80-mg dose unless the patient has already been taking the drug for 12 months and there is no evidence of myopathy.
"Simvastatin 80 mg should not be started in new patients, including patients already taking lower doses of the drug," the agency states.
The prognosis for those with spastic muscles depends on multiple factors, including the severity of the spasticity and the associated movement disorder, access to specialised and intensive management, and ability of the affected individual to maintain the management plan (particularly an exercise program). Most people with a significant UMN lesion will have ongoing impairment, but most of these will be able to make progress. The most important factor to indicate ability to progress is seeing improvement, but improvement in many spastic movement disorders may not be seen until the affected individual receives help from a specialised team or health professional.
It is not uncommon for drugs to damage muscle fibers. Particular families of drugs are known to induce myopathies on the molecular level, thus altering organelle function such as the mitochondria. Use of multiple drugs from these families in conjunction with one another can increase the risk of developing a myopathy. Many of the drugs associated with inducing myopathies in patients are found in rheumatology practice.
Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders characterised by the degeneration of lower motor neurons (neuronal cells situated in the anterior horn of the spinal cord) and subsequent atrophy (wasting) of various muscle groups in the body. While some SMAs lead to early infant death, other types permit normal adult life with only mild weakness.
Hyporeflexia refers to below normal or absent reflexes (areflexia). It can be detected through the use of a reflex hammer. It is the opposite of hyperreflexia.
Hyporeflexia is generally associated with a lower motor neuron deficit (at the alpha motor neurons from spinal cord to muscle), whereas hyperreflexia is often attributed to upper motor neuron lesions (along the long, motor tracts from the brain). The upper motor neurons are thought to inhibit the reflex arc, which is formed by sensory neurons from intrafusal fibers of muscles, lower motor neurons (including alpha and gamma motor fibers) and appurtenant interneurons. Therefore, damage to lower motor neurons will subsequently result in hyporeflexia and/or areflexia.
Note that, in spinal shock, which is commonly seen in the transection of the spinal cord (Spinal cord injury), areflexia can transiently occur below the level of the lesion and can , after some time, become hyperreflexic. Furthermore, cases of severe muscle atrophy or destruction could render the muscle too weak to show any reflex and should not be confused with a neuronal cause.
Hyporeflexia may have other causes, including hypothyroidism, electrolyte imbalance (e.g. excess magnesium), drug induced (e.g. the symptoms of benzodiazepine intoxication include confusion, slurred speech, ataxia, drowsiness, dyspnea, and hyporeflexia).
Diseases associated with hyporeflexia include
- Centronuclear myopathy
- Guillain–Barré syndrome
- Lambert-Eaton myasthenic syndrome
- Polyneuropathy (Achilles and plantar reflexes)
The disease has only been identified as distinct from SMA recently, so research is still experimental, taking place mostly in animal models. Several therapy pathways have been devised which include gene therapy, whereby an "IGHMBP2" transgene is delivered to the cell using a viral vector; small-molecule drugs like growth factors (e.g., IGF-1 and VEGF) or olesoxime; and transplantation of healthy motor neurons grown "in vitro" from the patient's stem cells. Studies in amyotrophic lateral sclerosis are also considered helpful because the condition is relatively similar to SMARD1.
Doublecortin positive cells, Similar to stem cells, are extremely adaptable and, when extracted from a brain, cultured and then re-injected in a lesioned area of the same brain, they can help repair and rebuild it. The treatment using them would take some time to be available for general public use, as it has to clear regulations and trials.
An upper motor neuron lesion (also known as pyramidal insufficiency) occurs in the neural pathway above the anterior horn cell of the spinal cord or motor nuclei of the cranial nerves. Conversely, a lower motor neuron lesion affects nerve fibers traveling from the anterior horn of the spinal cord or the cranial motor nuclei to the relevant muscle(s).
Upper motor neuron lesions occur in the brain or the spinal cord as the result of stroke, multiple sclerosis, traumatic brain injury and cerebral palsy.
Based on the type of muscles affected, spinal muscular atrophies can be divided into:
- "Proximal spinal muscular atrophies", i.e., conditions that affect primarily proximal muscles;
- "Distal spinal muscular atrophies" (which significantly overlap with distal hereditary motor neuronopathies) where they affect primarily distal muscles.
When taking into account prevalence, spinal muscular atrophies are traditionally divided into:
- "Autosomal recessive proximal spinal muscular atrophy", responsible for 90-95% of cases and usually called simply "spinal muscular atrophy" (SMA) – a disorder associated with a genetic mutation on the "SMN1" gene on chromosome 5q (locus 5q13), affecting people of any age but in its most severe form being the most common genetic cause of infant death;
- "Localised spinal muscular atrophies" – much more rare conditions, in some instances described in but a few patients in the world, which are associated with mutations of genes other than "SMN1" and for this reason sometimes termed simply "non-5q spinal muscular atrophies".
A more detailed classification is based on the gene associated with the condition (where identified) and is presented in table below.
In all forms of SMA (with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord, are affected; sensory neurons, which are located at the posterior horn of spinal cord, are not affected. By contrast, hereditary disorders that cause both weakness due to motor denervation along with "sensory" impairment due to sensory denervation are known as hereditary motor and sensory neuropathies (HMSN).
Many dietary factors and aberrations can induce ANIM. Chemical imbalances brought on by abnormal diets may either affect the muscle directly or induce abnormal functionality in upstream pathways.
- Excess Iodine consumption, especially in the form of kelp, can induce Hyperthyroidism. Hyperthyroidism is one of the most common ways to acquire ANIM. A hyperactive thyroid gland produces excessive amounts of hormones T3 and T4 leading to increased metabolism and increased sympathetic nervous system effects. The muscles exhibit a pathology similar to an overdose of epinephrine (commonly known as adrenaline). Patients with hyperthyroidism show weakness of shoulder girdle muscles in particular with this condition often being asymptomatic. More serious weakness of core and limb muscles may present.
- A dietary deficiency of vitamin D is most commonly associated with osteoporosis, but can cause ANIM as well. Vitamin D induced ANIM is most commonly associated with sleep deprivation as it induces tonsillar and adenotonsillar hypertrophy, as well as weakens the airway muscles. These changes induce sleep apnea and sleep disruption. Vitamin D induced ANM can also be associated with daytime impairment through this pathway.
Trauma to any muscle is also a common cause for acute ANIM. This is due to muscular contusions and partial or complete loss of function for affected muscle groups.
Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, collagen related, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis.
There are many types of myopathy. ICD-10 codes are provided here where available.
Muscle weakness or myasthenia (my- from Greek μυο meaning "muscle" + -asthenia ἀσθένεια meaning "weakness") is a lack of muscle strength. The causes are many and can be divided into conditions that have either true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular junction disorders, such as myasthenia gravis. Muscle weakness can also be caused by low levels of potassium and other electrolytes within muscle cells. It can be temporary or long-lasting (from seconds or minutes to months or years).
Muscle weakness can be classified as either "true" or "perceived" based on its cause.
- True muscle weakness (or neuromuscular weakness) describes a condition where the force exerted by the muscles is less than would be expected, for example muscular dystrophy.
- Perceived muscle weakness (or non-neuromuscular weakness) describes a condition where a person feels more effort than normal is required to exert a given amount of force but actual muscle strength is normal, for example chronic fatigue syndrome.
In some conditions, such as myasthenia gravis, muscle strength is normal when resting, but "true" weakness occurs after the muscle has been subjected to exercise. This is also true for some cases of chronic fatigue syndrome, where objective post-exertion muscle weakness with delayed recovery time has been measured and is a feature of some of the published definitions.
The exact mechanisms of these diseases are not well understood. GNE/MNK a key enzyme in the sialic acid biosynthetic pathway, and loss-of-function mutations in GNE/MNK may lead to a lack of sialic acid, which in turn could affect sialoglycoproteins. GNE knockout mice show problems similar to people with IBM and in people with IBM dystroglycan has been found to lack sialic acid. However, the part of the dystroglycan that is important in muscle function does not seem to be affected. Another protein, neural cell adhesion molecule is under-sialyated in people with IBM, but as of 2016 it had no known role in muscle function.
Distal hereditary motor neuropathy type V (dHMN V) is a particular type of neuropathic disorder. In general, distal hereditary motor neuropathies affect the axons of distal motor neurons and are characterized by progressive weakness and atrophy of muscles of the extremities. It is common for them to be called "spinal forms of Charcot-Marie-Tooth disease (CMT)", because the diseases are closely related in symptoms and genetic cause. The diagnostic difference in these diseases is the presence of sensory loss in the extremities. There are seven classifications of dHMNs, each defined by patterns of inheritance, age of onset, severity, and muscle groups involved. Type V (sometimes notated as Type 5) is a disorder characterized by autosomal dominance, weakness of the upper limbs that is progressive and symmetrical, and atrophy of the small muscles of the hands.
CIP/CIM can lead to difficulty weaning a person from a mechanical ventilator, and is associated with increased length of stay in the ICU and increased mortality (death). It can lead to impaired rehabilitation. Since CIP/CIM can lead to decreased mobility (movement), it increases the risk of pneumonia, deep vein thrombosis, and pulmonary embolism.
Critically ill people that are in a coma can become completely paralyzed from CIP/CIM. Improvement usually occurs in weeks to months, as the innervation to the muscles are restored. About half of patients recover fully.
Upper limb paralysis refers to the loss of function of the elbow and hand. When upper limb function is absent as a result of a spinal cord injury it is a major barrier to regain autonomy. People with tetraplegia should be examined and informed concerning the options for reconstructive surgery of the tetraplegic arms and hands.
The different forms have different mutations and inheritance patterns. See the detailed OMIM descriptions for details (given above).
dHMN V has a pattern of autosomal dominance, meaning that only one copy of the gene is needed for the development of the disease. However, there is incomplete penetrance of this disorder, meaning that some individuals with the disease-causing mutations will not display any symptoms. Mutations on chromosome 7 have been linked to this disease. It is allelic (i.e., caused by mutations on the same gene) with Charcot–Marie–Tooth disease and with Silver’s Syndrome, a disorder also characterized by small muscle atrophy in the hands.
Another rare form of dHMN V is associated with a splicing mutation in REEP-1, a gene often associated with hereditary spastic neuroplegia.
A multitude of neurological disorders cause BSS, including motor neuron disease, CNS disorders, and early amyotrophic lateral sclerosis. Usually, the bent spine is caused by dysfunctioning extensor spinal muscles with a neurological cause.
Neurological origin BSS may also result from damage to the basal ganglia nuclei that are a part of the cerebral cortex, which play a major role in bodily positioning. Damage to this part of the brain can inhibit proper flexion and extension in the muscles necessary for maintaining an upright position. Additionally, the neurotransmitter dopamine plays a key role in the operation of basal ganglia. An abnormally low dopamine concentration, such as that associated with Parkinson’s disease, causes dysfunction in the basal ganglia and the associated muscle groups, leading to BSS. Studies have estimated the prevalence of BSS in people affected by Parkinson's to be between 3% and 18%.
Distal muscular dystrophy (or distal myopathy) is a group of disorders characterized by onset in the hands or feet. Many types involve dysferlin, but it has been suggested that not all cases do.
Types include:
DYSF is also associated with limb-girdle muscular dystrophy type 2B.
Distal muscular dystrophy is a type of muscular dystrophy that affects the muscles of the extremities, the hands, feet, lower arms, or lower legs. The cause of this dystrophy is very hard to determine because it can be a mutation in any of at least eight genes and not all are known yet. These mutations can be inherited from one parent, autosomal dominant, or from both parents, autosomal recessive. Along with being able to inherit the mutated gene, distal muscular dystrophy has slow progress therefore the patient may not know that they have it until they are in their late 40’s or 50’s. There are eight known types of distal muscular dystrophy. They are Welander’s distal myopathy, Finnish (tibial) distal myopathy, Miyoshi distal myopathy, Nonaka distal myopathy, Gowers–Laing distal myopathy, hereditary inclusion-body myositis type 1, distal myopathy with vocal cord and pharyngeal weakness, and ZASP-related myopathy. All of these affect different regions of the extremities and can show up as early as 5 years of age to as late as 50 years old. Doctors are still trying to determine what causes these mutations along with effective treatments.
Several gene mutations have been identified in patients with camptocormia. These include the RYR1 gene in axial myopathy, the DMPK gene in myotonic dystrophy, and genes related to dysferlinopathy and Parkinson’s disease. These genes could serve as targets for gene therapy to treat the condition in the years to come.
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.