Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Every year between 2.18 and 7.7 people per million receive a diagnosis of PM or DM. Around 3.2 children per million per year are diagnosed with DM (termed juvenile dermatomyositis), with an average age of onset of seven years. Diagnosis of adult DM commonly occurs between 30 and 50 years of age. PM is an adult disease, usually emerging after the age of twenty. PM and DM are more common in females, more common in Caucasians, and least common in Asians. At any given time, about 35.5 people per million have IBM; it emerges after the age of 30 (usually after 50), and may be more common in males.
The cause of IBM is unknown. IBM likely results from the interaction of a number of genetic and environmental factors.
There are two major theories about how sIBM is caused. One hypothesis suggests that the inflammation-immune reaction, caused by an unknown trigger – likely an undiscovered virus or an autoimmune disorder– is the primary cause of sIBM and that the degeneration of muscle fibers and protein abnormalities are secondary features. Despite the arguments "in favor of an adaptive immune response in sIBM, a purely autoimmune hypothesis for sIBM is untenable because of the disease's resistance to most immunotherapy."
The second school of thought advocates the theory that sIBM is a degenerative disorder related to aging of the muscle fibers and that abnormal, potentially pathogenic protein accumulations in myofibrils play a key causative role in sIBM (apparently before the immune system comes into play). This hypothesis emphasizes the abnormal intracellular accumulation of many proteins, protein aggregation and misfolding, proteosome inhibition, and endoplasmic reticulum (ER) stress.
One review discusses the "limitations in the beta-amyloid-mediated theory of IBM myofiber injury."
Dalakas (2006) suggested that a chain of events causes IBM—some sort of virus, likely a retrovirus, triggers the cloning of T cells. These T cells appear to be driven by specific antigens to invade muscle fibers. In people with sIBM, the muscle cells display “flags” telling the immune system that they are infected or damaged (the muscles ubiquitously express MHC class I antigens) and this immune process leads to the death of muscle cells. The chronic stimulation of these antigens also causes stress inside the muscle cell in the endoplasmic reticulum (ER) and this ER stress may be enough to cause a self-sustaining T cell response (even after a virus has dissipated). In addition, this ER stress may cause the misfolding of protein. The ER is in charge of processing and folding molecules carrying antigens. In IBM, muscle fibers are overloaded with these major histocompatibility complex (MHC) molecules that carry the antigen protein pieces, leading to more ER stress and more protein misfolding.
A self-sustaining T cell response would make sIBM a type of autoimmune disorder. When studied carefully, it has not been impossible to detect an ongoing viral infection in the muscles. One theory is that a chronic viral infection might be the initial triggering factor setting IBM in motion. There have been a handful of IBM cases—approximately 15—that have shown clear evidence of a virus called HTLV-1. The HTLV-1 virus can cause leukemia, but in most cases lies dormant and most people end up being lifelong carriers of the virus. One review says that the best evidence points towards a connection with some type of retrovirus and that a retroviral infection combined with immune recognition of the retrovirus is enough to trigger the inflammation process.
- amyloid protein
- The hypothesis that beta amyloid protein is key to IBM has been supported in a mouse model using an Aβ vaccine that was found to be effective against inclusion body myositis in mouse models. Although this vaccine is likely not safe for human use, it still shows that attacking Aβ has efficacy in mice against IBM.
- Following up on earlier leads, the Greenberg group report finding that the protein TDP-43 is a very prominent and highly sensitive and specific feature of IBM. This protein is normally found within the nucleus but in IBM is found in the cytoplasm of the cell. This important advance should help develop a new screening technique for IBM and may provide clues in terms of a therapeutic approach
sIBM is not inherited and is not passed on to the children of IBM patients. There are genetic features that do not directly cause IBM but that appear to predispose a person to getting IBM — having this particular combination of genes increases one's susceptibility to getting IBM. Some 67% of IBM patients have a particular combination of human leukocyte antigen genes in a section of the 8.1 ancestral haplotype in the center of the MHC class II region. sIBM is not passed on from generation to generation, although the susceptibility region of genes may be.
There are also several rare forms of hereditary inclusion body myopathy that are linked to specific genetic defects and that are passed on from generation to generation. Since these forms do not show features of muscle inflammation, they are classified as myopathies rather than forms of myositis. Because they do not display inflammation as a primary symptom, they may in fact be similar, but different diseases to sporadic inclusion body myositis. There are several different types, each inherited in different ways. See hereditary inclusion body myopathy.
A 2007 review concluded there is no indication that the genes responsible for the familial or hereditary conditions are involved in sIBM.
Polymyositis is an inflammatory myopathy mediated by cytotoxic T cells with an as yet unknown autoantigen, while dermatomyositis is a humorally mediated angiopathy resulting in myositis and a typical dermatitis.
The cause of polymyositis is unknown and may involve viruses and autoimmune factors. Cancer may trigger polymyositis and dermatomyositis, possibly through an immune reaction against cancer that also attacks a component of muscles.
Polymyositis, like dermatomyositis, strikes females with greater frequency than males.
There have been few randomized treatment trials, due to the relative rarity of inflammatory myopathies. The goal of treatment is improvement in activities of daily living and muscle strength. Suppression of immune system activity (immunosuppression) is the treatment strategy. Patients with PM or DM almost always improve to some degree in response to treatment, at least initially, and many recover fully with maintenance therapy. (If there is no initial improvement from treatment of PM or DM, the diagnosis should be carefully re-examined.) There is no proven effective therapy for IBM, and most IBM patients will need assistive devices such as a cane, a walking frame or a wheelchair. The later in life IBM arises, the more aggressive it appears to be.
It is not uncommon for drugs to damage muscle fibers. Particular families of drugs are known to induce myopathies on the molecular level, thus altering organelle function such as the mitochondria. Use of multiple drugs from these families in conjunction with one another can increase the risk of developing a myopathy. Many of the drugs associated with inducing myopathies in patients are found in rheumatology practice.
Many dietary factors and aberrations can induce ANIM. Chemical imbalances brought on by abnormal diets may either affect the muscle directly or induce abnormal functionality in upstream pathways.
- Excess Iodine consumption, especially in the form of kelp, can induce Hyperthyroidism. Hyperthyroidism is one of the most common ways to acquire ANIM. A hyperactive thyroid gland produces excessive amounts of hormones T3 and T4 leading to increased metabolism and increased sympathetic nervous system effects. The muscles exhibit a pathology similar to an overdose of epinephrine (commonly known as adrenaline). Patients with hyperthyroidism show weakness of shoulder girdle muscles in particular with this condition often being asymptomatic. More serious weakness of core and limb muscles may present.
- A dietary deficiency of vitamin D is most commonly associated with osteoporosis, but can cause ANIM as well. Vitamin D induced ANIM is most commonly associated with sleep deprivation as it induces tonsillar and adenotonsillar hypertrophy, as well as weakens the airway muscles. These changes induce sleep apnea and sleep disruption. Vitamin D induced ANM can also be associated with daytime impairment through this pathway.
Trauma to any muscle is also a common cause for acute ANIM. This is due to muscular contusions and partial or complete loss of function for affected muscle groups.
While the exact incidence is unknown, estimates range from 33 - 57 percent of patients staying in the ICU for longer than 7 days. More exact data is difficult to obtain, since variation exists in defining the condition.
The three main risk factors for CIP and CIM are sepsis and systemic inflammatory response syndrome (SIRS), and multi-organ failure. Reported rates of CIP/CIM in people with sepsis and SIRS range from 68 to 100 percent. Additional risk factors for developing CIP/CIM include: female gender, high blood sugar (hyperglycemia), low serum albumin, and immobility. A greater severity of illness increases the risk of CIP/CIM. Such risk factors include: multi-organ dysfunction, renal failure, renal replacement therapy, duration of organ dysfunction, duration of ICU stay, low albumin, and central neurologic failure.
Certain medications are associated with CIP/CIM, such as corticosteroids, neuromuscular blocking agents, vasopressors, catecholamines, and intravenous nutrition (parenteral nutrition). Research has produced inconsistent results for the impact of hypoxia, hypotension, hyperpyrexia, and increased age on the risk of CIP/CIM. The use of aminoglycosides is "not" an independent risk for the development of CIP/CIM.
The exact mechanisms of these diseases are not well understood. GNE/MNK a key enzyme in the sialic acid biosynthetic pathway, and loss-of-function mutations in GNE/MNK may lead to a lack of sialic acid, which in turn could affect sialoglycoproteins. GNE knockout mice show problems similar to people with IBM and in people with IBM dystroglycan has been found to lack sialic acid. However, the part of the dystroglycan that is important in muscle function does not seem to be affected. Another protein, neural cell adhesion molecule is under-sialyated in people with IBM, but as of 2016 it had no known role in muscle function.
Prognosis strongly depends on which subtype of disease it is. Some are deadly in infancy but most are late onset and mostly manageable.
The different forms have different mutations and inheritance patterns. See the detailed OMIM descriptions for details (given above).
The Food and Drug Administration is recommending that physicians restrict prescribing high-dose Simvastatin (Zocor, Merck) to patients, given an increased risk of muscle damage. The FDA drug safety communication stated that physicians should limit using the 80-mg dose unless the patient has already been taking the drug for 12 months and there is no evidence of myopathy.
"Simvastatin 80 mg should not be started in new patients, including patients already taking lower doses of the drug," the agency states.
CIP/CIM can lead to difficulty weaning a person from a mechanical ventilator, and is associated with increased length of stay in the ICU and increased mortality (death). It can lead to impaired rehabilitation. Since CIP/CIM can lead to decreased mobility (movement), it increases the risk of pneumonia, deep vein thrombosis, and pulmonary embolism.
Critically ill people that are in a coma can become completely paralyzed from CIP/CIM. Improvement usually occurs in weeks to months, as the innervation to the muscles are restored. About half of patients recover fully.
Masticatory muscle myositis (MMM) is an inflammatory disease in dogs affecting the muscles of mastication (chewing). It is also known as atrophic myositis or eosinophilic myositis. MMM is the most common inflammatory myopathy in dogs. The disease mainly affects large breed dogs. German Shepherd Dogs and Cavalier King Charles Spaniels may be predisposed. There is a similar disease of the eye muscles found in Golden Retrievers. Symptoms of acute MMM include swelling of the jaw muscles, drooling, and pain on opening the mouth. Ophthalmic signs may include third eyelid protrusion, red eyes, and exophthalmos (protruding eyeballs). In chronic MMM there is atrophy of the jaw muscles, and scarring of the masticatory muscles due to fibrosis may result in inability to open the mouth (trismus). The affected muscles include the temporalis, masseter, and pterygoid muscles. The disease is usually bilateral.
MMM is caused by the presence of 2M fibers in the muscles of the jaw. 2M fibers are not found elsewhere in the body. The immune system recognizes these proteins as foreign to the body and attacks them, resulting in inflammation. Diagnosis of MMM is through either biopsy of the temporalis or masseter muscles or the 2M antibody assay, in which blood serum of the possible MMM-dog is reacted with temporalis tissue of a normal dog, or both. False negatives by the 2M antibody assay may be obtained if MMM is end-stage with destruction of type 2M fibers and marked fibrosis. Treatment is usually with corticosteroids such as prednisone, often with decreasing doses for up to 4–6 months, and in the case of trismus, manual opening of the mouth under anesthesia. Feeding very soft or liquid food during this time is usually necessary. The ultimate degree of recovery of jaw function and muscle mass will depend upon the extent of damage to the muscle tissue. Recurrence of MMM may occur. Misdiagnosis of MMM as a retroorbital abscess based on physical examination and finding of trismus leads to inappropriate treatment with antibiotics, which will not impede the progress of MMM.
At DeathMlg
None as systemic causes; mainly hereditary
Onset in childhood
Inflammatory myopathies – dermatomyositis, polymyositis (rarely)
Infectious myopathies
Endocrine and metabolic disorders – hypokalemia, hypocalcemia, hypercalcemia
Onset in adulthood
Inflammatory myopathies – polymyositis, dermatomyositis, inclusion body myositis, viral (HIV)
Infectious myopathies
Endocrine myopathies – thyroid, parathyroid, adrenal, pituitary disorders
Toxic myopathies – alcohol, corticosteroids, narcotics, colchicines, chloroquine
Critical illness myopathy
Metabolic myopathies
Paraneoplastic myopathy
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
The disease has only been identified as distinct from SMA recently, so research is still experimental, taking place mostly in animal models. Several therapy pathways have been devised which include gene therapy, whereby an "IGHMBP2" transgene is delivered to the cell using a viral vector; small-molecule drugs like growth factors (e.g., IGF-1 and VEGF) or olesoxime; and transplantation of healthy motor neurons grown "in vitro" from the patient's stem cells. Studies in amyotrophic lateral sclerosis are also considered helpful because the condition is relatively similar to SMARD1.
Desmin-related myofibrillar myopathy is a subgroup of the myofibrillar myopathy diseases and is the result of a mutation in the gene that codes for desmin which prevents it from forming protein filaments, instead forming aggregates of desmin and other proteins throughout the cell.
Bethlem myopathy is an autosomal dominant myopathy, classified as a congenital form of muscular dystrophy, that is caused by a mutation in one of the three genes coding for type VI collagen. These include COL6A1, COL6A2, and COL6A3.
The causes of polyneuropathy can be divided into hereditary and acquired and are therefore as follows:
- "Inherited" -are hereditary motor neuropathies, Charcot–Marie–Tooth disease, and hereditary neuropathy with liability to pressure palsy
- "Acquired" -are diabetes mellitus, vascular neuropathy, alcohol abuse, and Vitamin B12 deficiency
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
Currently there is no cure for myotubular or centronuclear myopathies. Treatment often focuses on trying to maximize functional abilities and minimize medical complications, and involvement by physicians specializing in Physical Medicine and Rehabilitation, and by physical therapists and occupational therapists.
Medical management generally involves efforts to prevent pulmonary complications, since lung infections can be fatal in patients lacking the muscle strength necessary to clear secretions via coughing. Medical devices to assist with coughing help patients maintain clear airways, avoiding mucous plugs and avoiding the need for tracheostomy tubes.
Monitoring for scoliosis is also important, since weakness of the trunk muscles can lead to deviations in spinal alignment, with resultant compromise of respiratory function. Many patients with congenital myopathies may eventually require surgical treatment of scoliosis.
In dairy breeds, the disease may occur in calves between birth and 4 months of age. In rustic breeds or beef cattle, heifers and young steers up to 12 months of age can be affected. In calves, muscles in upper portion of the front legs and the hind legs are degraded, causing the animal to have a stiff gait and it may have difficulty standing. The disease may also present in the form of respiratory distress.