Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
It is also known that disruption of the endocrine system by certain chemicals adversely affects the development of the reproductive system and can cause vaginal cancer. Many other reproductive diseases have also been link to exposure to synthetic and environmental chemicals. Common chemicals with known links to reproductive disorders include: lead, dioxins and dioxin-like compounds, styrene, toluene, BPA (Bisphenol A) and pesticides.
Examples of congenital abnormalities of the reproductive system include:
- Kallmann syndrome - Genetic disorder causing decreased functioning of the sex hormone-producing glands caused by a deficiency or both testes from the scrotum.
- Androgen insensitivity syndrome - A genetic disorder causing people who are genetically male (i.e. XY chromosome pair) to develop sexually as a female due to an inability to utilize androgen.
- Intersexuality - A person who has genitalia and/or other sexual traits which are not clearly male or female.
Twelve percent of all infertility cases are a result of a woman either being underweight or overweight. Fat cells produce estrogen, in addition to the primary sex organs. Too much body fat causes production of too much estrogen and the body begins to react as if it is on birth control, limiting the odds of getting pregnant. Too little body fat causes insufficient production of estrogen and disruption of the menstrual cycle. Both under and overweight women have irregular cycles in which ovulation does not occur or is inadequate. Proper nutrition in early life is also a major factor for later fertility.
A study in the US indicated that approximately 20% of infertile women had a past or current eating disorder, which is five times higher than the general lifetime prevalence rate.
A review from 2010 concluded that overweight and obese subfertile women have a reduced probability of successful fertility treatment and their pregnancies are associated with more complications and higher costs. In hypothetical groups of 1000 women undergoing fertility care, the study counted approximately 800 live births for normal weight and 690 live births for overweight and obese anovulatory women. For ovulatory women, the study counted approximately 700 live births for normal weight, 550 live births for overweight and 530 live births for obese women. The increase in cost per live birth in anovulatory overweight and obese women were, respectively, 54 and 100% higher than their normal weight counterparts, for ovulatory women they were 44 and 70% higher, respectively.
Factors that can cause male as well as female infertility are:
- DNA damage
- DNA damage reduces fertility in female ovocytes, as caused by smoking, other xenobiotic DNA damaging agents (such as radiation or chemotherapy) or accumulation of the oxidative DNA damage 8-hydroxy-deoxyguanosine
- DNA damage reduces fertility in male sperm, as caused by oxidative DNA damage, smoking, other xenobiotic DNA damaging agents (such as drugs or chemotherapy) or other DNA damaging agents including reactive oxygen species, fever or high testicular temperature
- General factors
- Diabetes mellitus, thyroid disorders, undiagnosed and untreated coeliac disease, adrenal disease
- Hypothalamic-pituitary factors
- Hyperprolactinemia
- Hypopituitarism
- The presence of anti-thyroid antibodies is associated with an increased risk of unexplained subfertility with an odds ratio of 1.5 and 95% confidence interval of 1.1–2.0.
- Environmental factors
- Toxins such as glues, volatile organic solvents or silicones, physical agents, chemical dusts, and pesticides. Tobacco smokers are 60% more likely to be infertile than non-smokers.
German scientists have reported that a virus called Adeno-associated virus might have a role in male infertility, though it is otherwise not harmful. Other diseases such as chlamydia, and gonorrhea can also cause infertility, due to internal scarring (fallopian tube obstruction).
According to the American Society for Reproductive Medicine (ASRM), Age, Smoking, Sexually Transmitted Infections, and Being Overweight or Underweight can all affect fertility.
In broad sense, acquired factors practically include any factor that is not based on a genetic mutation, including any intrauterine exposure to toxins during fetal development, which may present as infertility many years later as an adult.
There is increasing evidence that the harmful products of tobacco smoking may damage the testicles and kill sperm, but their effect on male fertility is not clear. Some governments require manufacturers to put warnings on packets. Smoking tobacco increases intake of cadmium, because the tobacco plant absorbs the metal. Cadmium, being chemically similar to zinc, may replace zinc in the DNA polymerase, which plays a critical role in sperm production. Zinc replaced by cadmium in DNA polymerase can be particularly damaging to the testes.
Links between maternal smoking and TDS are tenuous, but there are stronger associations between maternal alcohol consumption and incidences of cryptorchidism in sons. Smoking does however affect the growth of a fetus, and low birth weight is shown to increase the likelihood of all the disorders encompassed by TDS. Maternal obesity, resulting in gestational diabetes, has also been shown to be a risk factor for impaired testes development and TDS symptoms in sons.
Pre-testicular factors refer to conditions that impede adequate support of the testes and include situations of poor hormonal support and poor general health including:
- Hypogonadotropic hypogonadism due to various causes
- Obesity increases the risk of hypogonadotropic hypogonadism. Animal models indicate that obesity causes leptin insensitivity in the hypothalamus, leading to decreased Kiss1 expression, which, in turn, alters the release of gonadotropin-releasing hormone (GnRH).
- Undiagnosed and untreated coeliac disease (CD). Coeliac men may have reversible infertility. Nevertheless, CD can present with several non-gastrointestinal symptoms that can involve nearly any organ system, even in the absence of gastrointestinal symptoms. Thus, the diagnosis may be missed, leading to a risk of long-term complications. In men, CD can reduce semen quality and cause immature secondary sex characteristics, hypogonadism and hyperprolactinaemia, which causes impotence and loss of libido. The giving of gluten free diet and correction of deficient dietary elements can lead to a return of fertility. It is likely that an effective evaluation for infertility would best include assessment for underlying celiac disease, both in men and women.
- Drugs, alcohol
- Strenuous riding (bicycle riding, horseback riding)
- Medications, including those that affect spermatogenesis such as chemotherapy, anabolic steroids, cimetidine, spironolactone; those that decrease FSH levels such as phenytoin; those that decrease sperm motility such as sulfasalazine and nitrofurantoin
- Genetic abnormalities such as a Robertsonian translocation
In the US, up to 20% of infertile couples have unexplained infertility. In these cases abnormalities are likely to be present but not detected by current methods. Possible problems could be that the egg is not released at the optimum time for fertilization, that it may not enter the fallopian tube, sperm may not be able to reach the egg, fertilization may fail to occur, transport of the zygote may be disturbed, or implantation fails. It is increasingly recognized that egg quality is of critical importance and women of advanced maternal age have eggs of reduced capacity for normal and successful fertilization. Also, polymorphisms in folate pathway genes could be one reason for fertility complications in some women with unexplained infertility. However, a growing body of evidence suggests that epigenetic modifications in sperm may be partially responsible.
Exposure of a male fetus to substances that disrupt hormone systems, particularly chemicals that inhibit the action of androgens (male sex hormones) during the development of the reproductive system, has been shown to cause many of the characteristic TDS disorders. These include environmental estrogens and anti-androgens found in food and water sources that have been contaminated with synthetic hormones and pesticides used in agriculture. In historical cases, medicines given to pregnant women, like diethylstilbestrol (DES), have caused many of the features of TDS in fetuses exposed to this chemical during gestation. The impact of environmental chemicals is well documented in animal models. If a substance affects Sertoli and Leydig cell differentiation (a common feature of TDS disorders) at an early developmental stage, germ cell growth and testosterone production will be impaired. These processes are essential for testes descent and genitalia development, meaning that genital abnormalities like cryptorchidism or hypospadias may be present from birth, and fertility problems and TGCC become apparent during adult life. Severity or number of disorders may therefore be dependent on the timing of the environmental exposure. Environmental factors can act directly, or via epigenetic mechanisms, and it is likely that a genetic susceptibility augmented by environmental factors is the primary cause of TDS.
The cause is not entirely clear. Risk factors include having a family history of the condition.
Ovarian diseases can be classified as endocrine disorders or as a disorders of the reproductive system.
If the egg fails to release from the follicle in the ovary an ovarian cyst may form. Small ovarian cysts are common in healthy women. Some women have more follicles than usual (polycystic ovary syndrome), which inhibits the follicles to grow normally and this will cause cycle irregularities.
Other conditions include:
- Ovarian cancer
- Luteoma
- Hypogonadism
- Hyperthecosis
In the United States, uterus didelphys is reported to occur in 0.1–0.5% of women. It is difficult to know the exact occurrence of this anomaly, as it may go undetected in the absence of medical and reproductive complications.
In the Western world, the typical age of menopause (last period from natural causes) is between 40 and 61 and the average age for last period is 51 years. The average age of natural menopause in Australia is 51.7 years. In India and the Philippines, the median age of natural menopause is considerably earlier, at 44 years.
In rare cases, a woman's ovaries stop working at a very early age, ranging anywhere from the age of puberty to age 40. This is known as premature ovarian failure and affects 1 to 2% of women by age 40.
Undiagnosed and untreated coeliac disease is a risk factor for early menopause. Coeliac disease can present with several non-gastrointestinal symptoms, in the absence of gastrointestinal symptoms, and most cases escape timely recognition and go undiagnosed, leading to a risk of long-term complications. A strict gluten-free diet reduces the risk. Women with early diagnosis and treatment of coeliac disease present a normal duration of fertile life span.
Women who have undergone hysterectomy with ovary conservation go through menopause on average 3.7 years earlier than the expected age. Other factors that can promote an earlier onset of menopause (usually 1 to 3 years early) are smoking cigarettes or being extremely thin.
The prevalence of uterine malformation is estimated to be 6.7% in the general population, slightly higher (7.3%) in the infertility population, and significantly higher in a population of women with a history of recurrent miscarriages (16%).
Some factors associated with endometriosis include:
- not having had yet given birth
- prolonged exposure to estrogen - for example, in late menopause or early menarche
- obstruction of menstrual outflow - for example, in Müllerian anomalies
Several studies have investigated the potential link between exposure to dioxins and endometriosis, but the evidence is equivocal and potential mechanisms are poorly understood. A 2004 review of studies of dioxin and endometriosis concluded that "the human data supporting the dioxin-endometriosis association are scanty and conflicting", and a 2009 follow-up review also found that there was "insufficient evidence" in support of a link between dioxin exposure and women developing endometriosis. A 2008 review concluded that more work was needed, stating that "although preliminary work suggests a potential involvement of exposure to dioxins in the pathogenesis of endometriosis, much work remains to clearly define cause and effect and to understand the potential mechanism of toxicity".
Being pregnant decreases the risk of relapse in multiple sclerosis; however, during the first months after delivery the risk increases. Overall, pregnancy does not seem to influence long-term disability. Multiple sclerosis does not increase the risk of congenital abnormality or miscarriage.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
A number of twin gestations have occurred where each uterus carried its pregnancy separately. A recent example occurred on February 26, 2009, when Sarah Reinfelder of Sault Ste. Marie, Michigan delivered two healthy, although seven weeks premature, infants by cesarean section at Marquette General Hospital. It is possible that the deliveries occur at different times, thus the delivery interval could be days or even weeks.
The occurrence of all types of paramesonephric duct abnormalities in women is estimated around 0.4%.
A bicornuate uterus is estimated to occur in 0.1-0.5% of women in the U.S.
It is possible that this figure is an underestimate, since subtle abnormalities often go undetected. Some intersex individuals whose external genitalia are perceived as being male may nonetheless have a variably shaped uterus.
Menopause confers:
- A possible but contentious increased risk of atherosclerosis. The risk of acute myocardial infarction and other cardiovascular diseases rises sharply after menopause, but the risk can be reduced by managing risk factors, such as tobacco smoking, hypertension, increased blood lipids and body weight.
- Increased risk of osteopenia, osteoporosis, and accelerated lung function decline.
Women who experience menopause before 45 years of age have an increased risk of heart disease, death, and impaired lung function.
Pregnancies in a bicornuate uterus are usually considered high risk and require extra monitoring because of association with poor reproduction potential.
A bicornuate uterus is associated with increased adverse reproductive outcomes, such as:
- Recurrent pregnancy loss
- Preterm birth: The rate of preterm delivery is 15 to 25%. A pregnancy may not reach full term in a bicornuate uterus when the baby begins to grow in either of the uterine horns. A short cervical length seems to be a good predictor of preterm delivery in women with a bicornuate uterus.
- Malpresentation (breech birth or transverse presentation): a breech presentation occurs in 40-50% of pregnancies with a partial bicornuate uterus and not at all (0%) in a complete bicornuate uterus.
- Deformity: Offspring of mothers with a bicornuate uterus are at high risk for "deformities and disruptions" and "malformations."
Previously, a bicornuate uterus was thought to be associated with infertility, but recent studies have not confirmed such an association.
A female genital disease is a condition that affects the female reproductive system.
Regular testing for sexually transmitted infections is encouraged for prevention. The risk of contracting pelvic inflammatory disease can be reduced by the following:
- Using barrier methods such as condoms; see human sexual behavior for other listings.
- Seeking medical attention if you are experiencing symptoms of PID.
- Using hormonal combined contraceptive pills also helps in reducing the chances of PID by thickening the cervical mucosal plug & hence preventing the ascent of causative organisms from the lower genital tract.
- Seeking medical attention after learning that a current or former sex partner has, or might have had a sexually transmitted infection.
- Getting a STI history from your current partner and strongly encouraging they be tested and treated before intercourse.
- Diligence in avoiding vaginal activity, particularly intercourse, after the end of a pregnancy (delivery, miscarriage, or abortion) or certain gynecological procedures, to ensure that the cervix closes.
- Reducing the number of sexual partners.
- Sexual monogamy.
- Abstinence
Alternatively, female genital diseases can be more strictly classified by location of the disease, which, in turn, can be broadly divided between diseases that affect the female internal genitalia and those that affect the female external genitalia.