Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
Most household disinfectants will inactivate FHV-1. The virus can survive up to 18 hours in a damp environment, but less in a dry environment and only shortly as an aerosol.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
Congential rubella is still a risk with higher risk among immigrant women from countries without adequate vaccination programs.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.
Although epidemiologic characteristics of the adenoviruses vary by type, all are transmitted by direct contact, fecal-oral transmission, and occasionally waterborne transmission. Some types are capable of establishing persistent asymptomatic infections in tonsils, adenoids, and intestines of infected hosts, and shedding can occur for months or years. Some adenoviruses (e.g., serotypes 1, 2, 5, and 6) have been shown to be endemic in parts of the world where they have been studied, and infection is usually acquired during childhood. Other types cause sporadic infection and occasional outbreaks; for example, epidemic keratoconjunctivitis is associated with adenovirus serotypes 8, 19, and 37. Epidemics of febrile disease with conjunctivitis are associated with waterborne transmission of some adenovirus types, often centering on inadequately chlorinated swimming pools and small lakes. ARD is most often associated with adenovirus types 4 and 7 in the United States. Enteric adenoviruses 40 and 41 cause gastroenteritis, usually in children. For some adenovirus serotypes, the clinical spectrum of disease associated with infection varies depending on the site of infection; for example, infection with adenovirus 7 acquired by inhalation is associated with severe lower respiratory tract disease, whereas oral transmission of the virus typically causes no or mild disease. Outbreaks of adenovirus-associated respiratory disease have been more common in the late winter, spring, and early summer; however, adenovirus infections can occur throughout the year.
"Ad14 (for adenovirus serotype 14), has caused at least 140 illnesses in New York, Oregon, Texas and Washington, according to a report from the Centers for Disease Control and Prevention. The illness made headlines in Texas in September 2007, when a so-called "boot camp flu" sickened hundreds at Lackland Air Force Base in San Antonio. A 19-year-old trainee died."
Several adenoviruses, including Ad5, Ad9, Ad31, Ad36, Ad37, and SMAM1, have at least some evidence of causation of obesity in animals, adipogenesis in cells, and/or association with human obesity. To date, the most thorough investigations have been conducted for adenovirus serotype 36 (Adv36).
Adenovirus can cause severe necrotizing pneumonia in which all or part of a lung has increased translucency radiographically, which is called Swyer-James Syndrome. Severe adenovirus pneumonia also may result in bronchiolitis obliterans, a subacute inflammatory process in which the small airways are replaced by scar tissue, resulting in a reduction in lung volume and lung compliance.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
BVDV infection has a wide manifestation of clinical signs including fertility issues, milk drop, pyrexia, diarrhoea and fetal infection. Occasionally, a severe acute form of BVD may occur. These outbreaks are characterized by thrombocytopenia with high morbidity and mortality. However, clinical signs are frequently mild and infection insidious, recognised only by BVDV’s immunosuppressive effects perpetuating other circulating infectious diseases (particularly scours and pneumonias).
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Fetal infection is of most consequence as this can result in the birth of a persistently infected neonate. The effects of fetal infection with BVDV are dependent upon the stage of gestation at which the dam suffers acute infection.
BVDV infection of the dam prior to conception, and during the first 18 days of gestation, results in delayed conception and an increased calving to conception interval. Once the embryo is attached, infection from days 29–41 can result in embryonic infection and resultant embryonic death.
Infection of the dam from approximately day 30 of gestation until day 120 can result in immunotolerance and the birth of calves persistently infected with the virus.
BVDV infection between 80 and 150 days of gestation may be teratogenic, with the type of birth defect dependent upon the stage of fetal development at infection. Abortion may occur at any time during gestation. Infection after approximately day 120 can result in the birth of a normal fetus which is BVD antigen-negative and BVD antibody-positive. This occurs because the fetal immune system has developed, by this stage of gestation, and has the ability to recognise and fight off the invading virus, producing anti-BVD antibodies.
Worldwide, approximately 1 in 100 to 500 babies are born with congenital CMV. Approximately 1 in 3000 will show symptoms and 1 in 7000 will die.
Congenital HCMV infection occurs when the mother suffers a primary infection (or reactivation) during pregnancy. Due to the lower seroprevalence of HCMV in industrialized countries and higher socioeconomic groups, congenital infections are actually less common in poorer communities, where more women of child-bearing age are already seropositive. In industrialized countries up to 8% of HCMV seronegative mothers contract primary HCMV infection during pregnancy, of which roughly 50% will transmit to the fetus. Between 22–38% of infected fetuses are then born with symptoms, which may include pneumonia, gastrointestinal, retinal and neurological disease. HCMV infection occurs in roughly 1% of all neonates with those who are not congenitally infected contracting the infection possibly through breast milk. Other sources of neonatal infection are bodily fluids which are known to contain high titres in shedding individuals: saliva (<10copies/ml) and urine (<10copies/ml ) seem common routes of transmission.
The incidence of primary CMV infection in pregnant women in the United States varies from 1% to 3%. Healthy pregnant women are not at special risk for disease from CMV infection. When infected with CMV, most women have no symptoms and very few have a disease resembling infectious mononucleosis. It is their developing fetuses that may be at risk for congenital CMV disease. CMV remains the most important cause of congenital viral infection in the United States. HCMV is the most common cause of congenital infection in humans and intrauterine primary infections are more common than other well-known infections and syndromes, including Down Syndrome, Fetal Alcohol Syndrome, Spina Bifida, and Pediatric HIV/AIDS.
Some disease-carrying arthropods use cats as a vector, or carrier. Fleas and ticks can carry pathogenic organisms that infect a person with Lyme disease, tick borne encephalitis, and Rocky mountain spotted fever
Since opportunistic infections can cause severe disease, much emphasis is placed on measures to prevent infection. Such a strategy usually includes restoration of the immune system as soon as possible, avoiding exposures to infectious agents, and using antimicrobial medications ("prophylactic medications") directed against specific infections.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
Infection in the newborn is accompanied by a strong immune response and is correlated with the need for prolonged mechanical ventilation.
Infection with "U. urealyticum" in pregnancy and birth can be complicated by chorioamnionitis, stillbirth, premature birth, and, in the perinatal period, pneumonia, bronchopulmonary dysplasia and meningitis. "U. urealyticum" has been found to be present in amniotic fluid in women who have had a premature birth with intact fetal membranes.
"U. urealyticum" has been noted as one of the infectious causes of sterile pyuria. It increases the morbidity as a cause of neonatal infections. It is associated with premature birth, preterm rupture of membranes, preterm labor, cesarean section, placental inflammation, congenital pneumonia, bacteremia, meningitis, fetal lung injury and death of infant. "Ureaplasma urealyticum" is associated with miscarriage.
Herpes labialis is common throughout the world. A large survey of young adults on six continents reported that 33% of males and 28% of females had herpes labialis on two or more occasions during the year before the study. The lifetime prevalence in the United States of America is estimated at 20–45% of the adult population. Lifetime prevalence in France was reported by one study as 32% in males and 42% in females. In Germany, the prevalence was reported at 32% in people aged between 35 and 44 years, and 20% in those aged 65–74. In Jordan, another study reported a lifetime prevalence of 26%.
The current incidence in the United States is somewhere around 0.5% per year; overall, the incidence rate for developed world falls between 0.2–0.7%. In developing countries, the incidence of omphalitis varies from 2 to 7 for 100 live births. There does not appear to be any racial or ethnic predilection.
Like many bacterial infections, omphalitis is more common in those patients who have a weakened or deficient immune system or who are hospitalized and subject to invasive procedures. Therefore, infants who are premature, sick with other infections such as blood infection (sepsis) or pneumonia, or who have immune deficiencies are at greater risk. Infants with normal immune systems are at risk if they have had a prolonged birth, birth complicated by infection of the placenta (chorioamnionitis), or have had umbilical catheters.
This disease is most common among the elderly, infants, and children. People with immune deficiency, diabetes, alcoholism, skin ulceration, fungal infections, and impaired lymphatic drainage (e.g., after mastectomy, pelvic surgery, bypass grafting) are also at increased risk.