Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
Nicolaides–Baraitser syndrome (NCBRS) is a rare genetic condition caused by de novo missense mutations in the SMARCA2 gene and has only been reported in less than 100 cases worldwide. NCBRS is a distinct condition and well recognizable once the symptoms have been identified.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
This is a rare condition with an incidence estimated to be less than 1 in a million live births. About 100 cases have been reported worldwide. The bulk of cases are sporadic but familial forms with autosomal dominant transmission have also been described.
Genetic
- Inborn errors of metabolism
1. Congenital disorder of glycosylation
2. Mitochondrial disorders
3. Peroxisomal disorder
4. Glucose transporter defect
5. Menkes disease
6. Congenital disorders of amino acid metabolism
7. Organic acidemia
Syndromes
- Contiguous gene deletion
1. 17p13.3 deletion (Miller–Dieker syndrome)
- Single gene defects
1. Rett syndrome (primarily girls)
2. Nijmegen breakage syndrome
3. X-linked lissencephaly with abnormal genitalia
4. Aicardi–Goutières syndrome
5. Ataxia telangiectasia
6. Cohen syndrome
7. Cockayne syndrome
Acquired
- Disruptive injuries
1. Traumatic brain injury
2. Hypoxic-ischemic encephalopathy
3. Ischemic stroke
4. Hemorrhagic stroke
- Infections
1. Congenital HIV encephalopathy
2. Meningitis
3. Encephalitis
- Toxins
1. Lead poisoning
2. Chronic renal failure
- Deprivation
1. Hypothyroidism
2. Anemia
3. Congenital heart disease
4. Malnutrition
Genetic factors may play a role in causing some cases of microcephaly. Relationships have been found between autism, duplications of chromosomes, and macrocephaly on one side. On the other side, a relationship has been found between schizophrenia, deletions of chromosomes, and microcephaly. Moreover, an association has been established between common genetic variants within known microcephaly genes ("MCPH1, CDK5RAP2") and normal variation in brain structure as measured with magnetic resonance imaging (MRI)i.e., primarily brain cortical surface area and total brain volume.
The spread of Aedes mosquito-borne Zika virus has been implicated in increasing levels of congenital microcephaly by the International Society for Infectious Diseases and the US Centers for Disease Control and Prevention. Zika can spread from a pregnant woman to her fetus. This can result in other severe brain malformations and birth defects. A study published in The New England Journal of Medicine has documented a case in which they found evidence of the Zika virus in the brain of a fetus that displayed the morphology of microcephaly.
Isolated
1. Familial (autosomal recessive) microcephaly
2. Autosomal dominant microcephaly
3. X-linked microcephaly
4. Chromosomal (balanced rearrangements and ring chromosome)
Syndromes
- Chromosomal
1. Poland syndrome
2. Down syndrome
3. Edward syndrome
4. Patau syndrome
5. Unbalanced rearrangements
- Contiguous gene deletion
1. 4p deletion (Wolf–Hirschhorn syndrome)
2. 5p deletion (Cri-du-chat)
3. 7q11.23 deletion (Williams syndrome)
4. 22q11 deletion (DiGeorge syndrome)
- Single gene defects
1. Smith–Lemli–Opitz syndrome
2. Seckel syndrome
3. Cornelia de Lange syndrome
4. Holoprosencephaly
5. Primary microcephaly 4
6. Wiedemann-Steiner syndrome
Acquired
- Disruptive injuries
1. Ischemic stroke
2. Hemorrhagic stroke
3. Death of a monozygotic twin
- Vertically transmitted infections
1. Congenital cytomegalovirus infection
2. Toxoplasmosis
3. Congenital rubella syndrome
4. Zika virus
- Drugs
1. Fetal hydantoin syndrome
2. Fetal alcohol syndrome
Other
1. Radiation exposure to mother
2. Maternal malnutrition
3. Maternal phenylketonuria
4. Poorly controlled gestational diabetes
5. Hyperthermia
6. Maternal hypothyroidism
7. Placental insufficiency
The incidence of RCVS is unknown, but it is believed to be "not uncommon", and likely under-diagnosed. One small, possibly biased study found that the condition was eventually diagnosed in 45% of outpatients with sudden headache, and 46% of outpatients with thunderclap headache.
The average age of onset is 42, but RCVS has been observed in patients aged from 19 months to 70 years. Children are rarely affected. It is more common in females, with a female-to-male ratio of 2.4:1.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
Bilateral frontoparietal polymicrogyria (BFPP) is a genetic disorder with autosomal recessive inheritance that causes a cortical malformation. Our brain has folds in the cortex to increase surface area called gyri and patients with polymicrogyri have an increase number of folds and smaller folds than usual. Polymicrogyria is defined as a cerebral malformation of cortical development in which the normal gyral pattern of the surface of the brain is replaced by an excessive number of small, fused gyri separated by shallow sulci and abnormal cortical lamination. From ongoing research, mutation in GPR56, a member of the adhesion G protein-coupled receptor (GPCR) family, results in BFPP. These mutations are located in different regions of the protein without any evidence of a relationship between the position of the mutation and phenotypic severity. It is also found that GPR56 plays a role in cortical pattering.
SUCLA2 and RRM2B related forms result in deformities to the brain. A 2007 study based on 12 cases from the Faroe Islands (where there is a relatively high incidence due to a founder effect) suggested that the outcome is often poor with early lethality. More recent studies (2015) with 50 people with SUCLA2 mutations, with range of 16 different mutations, show a high variability in outcomes with a number of people surviving into adulthood (median survival was 20 years. There is significant evidence (p = 0.020) that people with missense mutations have longer survival rates, which might mean that some of the resulting protein has some residual enzyme activity.
RRM2B mutations have been reported in 16 infants with severe encephalomyopathic MDS that is associated with early-onset (neonatal or infantile), multi-organ presentation, and mortality during infancy.
The most common symptoms of Nicolaides–Baraitser syndrome are mild to severe developmental delays with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, and prominent finger joints and broad distal phalanges.
Mosaic mutations in PIK3CA have been found to be the genetic cause of M-CM. Genetic testing for the mutation is currently only available on a research basis. Other overgrowth conditions with distinct phenotypes have also been found to be caused by mosaic mutations in PIK3CA. How different mutations in this gene result in a variety of defined clinical syndromes is still being clarified. Mutations in PIK3CA have not been found in a non-mosaic state in any of these disorders, so it is unlikely that the conditions could be inherited.
Although it is possible for the birthmark and atrophy in the cerebral cortex to be present without symptoms, most infants will develop convulsive seizures during their first year of life. There is a greater likelihood of intellectual impairment when seizures are resistant to treatment. Studies do not support the widely held belief that seizure frequency early in life in patients who have SWS is a prognostic indicator.
Microlissencephaly is listed in Orphanet database as a rare disease. There is no much information available about the epidemiology of microlissencepahly in literature. A PhD thesis has estimated the prevalence of microlissencepahly in South–Eastern Hungary between July 1992 and June 2006 to be a case every 91,000 live births (0.11:10,000).
Worldwide prevalence of Aicardi Syndrome is estimated at several thousand, with approximately 900 cases reported in the United States.
The TK2 related myopathic form results in muscle weakness, rapidly progresses, leading to respiratory failure and death within a few years of onset. The most common cause of death is pulmonary infection. Only a few people have survived to late childhood and adolescence.
Aicardi–Goutières syndrome (AGS), which is completely distinct from the similarly named Aicardi syndrome, is a rare, usually early onset childhood, inflammatory disorder most typically affecting the brain and the skin (neurodevelopmental disorder). The majority of affected individuals experience significant intellectual and physical problems, although this is not always the case. The clinical features of AGS can mimic those of "in utero" acquired infection, and some characteristics of the condition also overlap with the autoimmune disease systemic lupus erythematosus (SLE). Following an original description of eight cases in 1984, the condition was first referred to as 'Aicardi–Goutières syndrome' (AGS) in 1992, and the first international meeting on AGS was held in Pavia, Italy, in 2001.
AGS can occur due to mutations in any one of a number of different genes, of which seven have been identified to date, namely: TREX1, RNASEH2A, RNASEH2B, RNASEH2C (which together encode the Ribonuclease H2 enzyme complex), SAMHD1, ADAR1, and IFIH1 (coding for MDA5). This neurological disease occurs in all populations worldwide, although it is almost certainly under-diagnosed. To date (2014) at least 400 cases of AGS are known.
Laboratory: normal metabolic and infective screening. An increase in the number of white cells (particularly lymphocytes) in the CSF, and high levels of interferon-alpha activity and neopterin in the CSF are important clues - however, these features are not always present. More recently, a persistent elevation of mRNA levels of interferon-stimulated gene transcripts have been recorded in the peripheral blood of almost all cases of AGS with mutations in "TREX1", "RNASEH2A", "RNASEH2C", "SAMHD1", "ADAR1" and "IFIH1", and in 75% of patients with mutations in "RNASEH2B". These results are irrespective of age. Thus, this interferon signature appears to be a very good marker of disease.
Genetics: pathogenic mutations in any of the seven genes known to be involved in AGS.
Lissencephaly 2, more commonly called Norman–Roberts syndrome, is a rare form of microlissencephaly caused by a mutation in the RELN gene.A small number of cases have been described. The syndrome was first reported by Margaret Grace Norman and M. Roberts et al. in 1976.
Lack of reelin prevents normal layering of the cerebral cortex and disrupts cognitive development. Patients have cerebellar hypoplasia and suffer from congenital lymphedema and hypotonia. The disorder is also associated with myopia, nystagmus and generalized seizures.
Norman–Roberts syndrome is one of two known disorders caused by a disruption of the reelin-signaling pathway. The other is VLDLR-associated cerebellar hypoplasia, which is caused by a mutation in the gene coding for one of the reelin receptors, VLDLR.
Disruption of the RELN gene in human patients is analogous to the malfunctioning RELN gene in the reeler mouse.
The rare cases that have been examined are often within families, or the people that have cases of micro syndrome have a mutation in their genes.
It can be associated with "RAB3GAP".
Because pachygyria is a structural defect no treatments are currently available other than symptomatic treatments, especially for associated seizures. Another common treatment is a gastrostomy (insertion of a feeding tube) to reduce possible poor nutrition and repeated aspiration pneumonia.
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
The syndrome was first described in 1943 and believed to be associated with racemose hemangiomatosis of the retina and arteriovenous malformations of the brain. It is non-hereditary and belongs to phakomatoses that do not have a cutaneous (pertaining to the skin) involvement. This syndrome can affect the retina, brain, skin, bones, kidney, muscles, and the gastrointestinal tract.