Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congenital diaphragmatic hernia has a mortality rate of 40–62%, with outcomes being more favorable in the absence of other congenital abnormalities. Individual rates vary greatly dependent upon multiple factors: size of hernia, organs involved, additional birth defects, and/or genetic problems, amount of lung growth, age and size at birth, type of treatments, timing of treatments, complications (such as infections) and lack of lung function.
Bochdalek hernias make up about 0.17% to 6% of all diaphragmatic hernia cases and about one in every 2200 to 12,500 births every year. Babies who are born with a Bochdalek hernia are more than likely to have another birth defect caused by the hernia. About twenty percent of those children born with a Bochdalek hernia, also have a congenital heart defect. In addition, infants born with this condition may also have other abnormalities. "Between five and sixteen [percent of infants] have a chromosomal abnormality." In most cases, left-sided hernias or Bochdalek hernias have a ratio of 3:2 of males to females. In other words, Bochdalek hernias are more common in men.
The incidence of VACTERL association is estimated to be approximately 1 in 10,000 to 1 in 40,000 live-born infants. It is seen more frequently in infants born to diabetic mothers. While most cases are sporadic, there are clearly families who present with multiple involved members.
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
Studies have shown that obesity of the mother increases the risk of neural tube disorders such as iniencephaly by 1.7 fold while severe obesity increases the risk by over 3 fold.
Bochdalek hernia can be a life-threatening condition. Approximately 85.3% of newborns born with a Bochdalek hernia are immediately high risk. Infants born with a Bochdalek hernia have a "high mortality rate due to respiratory insufficiency". Between 25–60% of infants with a Bochdalek hernia die. The lungs, diaphragm, and digestive system are all forming at the same time, so when a Bochdalek hernia permits the abdominal organs to invade the chest cavity rather than remain under the diaphragm in the correct position, it puts the infant in critical condition. These "foreign bodies" in the chest cavity compress the lungs, impairing their proper development and causing pulmonary hypoplasia. Since the lungs of infants suffering from a Bochdalek hernia have fewer alveoli than normal lungs, Bochdalek hernias are life-threatening conditions due to respiratory distress. Also, if the invasion of the intestine or stomach punctures the lung, then the lungs cannot fill completely with air. The baby will not be healthy or stable with this condition because he or she cannot take in enough air and oxygen to keep the body operating properly. Like the lungs, the intestines may also have trouble developing correctly. If the intestines are trapped within the lungs, then the lungs and intestines may not be receiving the amount of blood they need to stay healthy and function properly.
Mothers with poor socioeconomic conditions, poor nutrition, low parity, and lack of folic acid supplementation, and/or hyperhomocysteinemia have shown to be at larger risk.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
The inheritance of Impossible syndrome is suspected to be autosomal recessive, which means the affected gene is located on an autosome, and two copies of the gene - one from each parent - are required to have an infant with the disorder.
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm. The most common type of CDH is a Bochdalek hernia; other types include Morgagni hernia, diaphragm eventration and central tendon defects of the diaphragm. Malformation of the diaphragm allows the abdominal organs to push into the chest cavity, hindering proper lung formation.
CDH is a life-threatening pathology in infants and a major cause of death due to two complications: pulmonary hypoplasia and pulmonary hypertension. Experts disagree on the relative importance of these two conditions, with some focusing on hypoplasia, others on hypertension. Newborns with CDH often have severe respiratory distress which can be life-threatening unless treated appropriately.
Pentalogy of Cantrell (or thoraco-abdominal syndrome) is a rare syndrome that causes defects involving the diaphragm, abdominal wall, pericardium, heart and lower sternum.
Its prevalence is less than 1 in 1000000.
It was characterized in 1958.
A locus at Xq25-26 has been described.
The occurrence of ectopia cordis is 8 per million births. It is typically classified according to location of the ectopic heart, which includes:
- Cervical
- Thoracic
- Thoracoabdominal
- Abdominal
Thoracic and thoraco-abdominal ectopia cordis constitute the vast majority of known cases.
Pectus excavatum occurs in an estimated 1 in 150 to 1 in 1000 births, with male predominance (male-to-female ratio of 3:1). In 35% to 45% of cases family members are affected.
Researchers are unsure of the cause of pectus excavatum but assume that there is a genetic component for at least some of the cases as 37% of individuals have an affected first degree family member. As of 2012, a number of genetic markers for pectus excavatum have also been discovered.
Pectus excavatum is a relatively common symptom of Noonan syndrome, Marfan syndrome and Loeys-Dietz syndrome and sometimes is found in other connective tissue disorders such as Ehlers–Danlos Syndrome. Many children with spinal muscular atrophy develop pectus excavatum due to their diaphragmatic breathing. Pectus excavatum also occurs in about 1% of persons diagnosed with celiac disease for unknown reasons.
Impossible Syndrome, or Chondrodysplasia situs inversus imperforate anus polydactyly, is a complex combination of human congenital malformations (birth defects).
The malformations include chondrodysplasia (improper growth of bone and cartilage), situs inversus totalis (chest and abdominal organs all a mirror image of normal), cleft larynx and epiglottis, hexadactyly (six digits) on hands and feet, diaphragmatic hernia, pancreatic abnormalities, kidney abnormal on one side and absent on the other side, micropenis and ambiguous genitalia, and imperforate anus.
Only one case of Impossible Syndrome has been reported; the infant was premature and stillborn.
Treatment for a diaphragmatic hernia usually involves surgery, with acute injuries often repaired with monofilament permanent sutures.
Due to the rarity and rapid postpartum mortality of ectopia cordis, limited treatment options have been developed. Only one successful surgery has been performed as of now, and the mortality rate remains high.
Physiologically, increased pressure "in utero", rickets and increased traction on the sternum due to abnormalities of the diaphragm have been postulated as specific mechanisms. Because the heart is located behind the sternum, and because individuals with pectus excavatum have been shown to have visible deformities of the heart seen both on radiological imaging and after autopsies, it has been hypothesized that there is impairment of function of the cardiovascular system in individuals with pectus excavatum. While some studies have demonstrated decreased cardiovascular function, no consensus has been reached based on newer physiological tests such as echocardiography of the presence or degree of impairment in cardiovascular function. Similarly, there is no consensus on the degree of functional improvement after corrective surgery; A 2013 meta-analysis yielded conflicting results.
According to the National Human Genome Research Institute, Poland syndrome affects males three times as often as females and affects the right side of the body twice as often as the left. The incidence is estimated to range from one in 7,000 to one in 100,000 live births.
Causes of pulmonary hypoplasia include a wide variety of congenital malformations and other conditions in which pulmonary hypoplasia is a complication. These include congenital diaphragmatic hernia, congenital cystic adenomatoid malformation, fetal hydronephrosis, caudal regression syndrome, mediastinal tumor, and sacrococcygeal teratoma with a large component inside the fetus. Large masses of the neck (such as cervical teratoma) also can cause pulmonary hypoplasia, presumably by interfering with the fetus's ability to fill its lungs. In the presence of pulmonary hypoplasia, the EXIT procedure to rescue a baby with a neck mass is not likely to succeed.
Fetal hydrops can be a cause, or conversely a complication.
Pulmonary hypoplasia is associated with oligohydramnios through multiple mechanisms. Both conditions can result from blockage of the urinary bladder. Blockage prevents the bladder from emptying, and the bladder becomes very large and full. The large volume of the full bladder interferes with normal development of other organs, including the lungs. Pressure within the bladder becomes abnormally high, causing abnormal function in the kidneys hence abnormally high pressure in the vascular system entering the kidneys. This high pressure also interferes with normal development of other organs. An experiment in rabbits showed that PH also can be caused directly by oligohydramnios.
Pulmonary hypoplasia is associated with dextrocardia of embryonic arrest in that both conditions can result from early errors of development, resulting in Congenital cardiac disorders.
PH is a common direct cause of neonatal death resulting from pregnancy induced hypertension.
The cause of Poland syndrome is unknown. However, an interruption of the embryonic blood supply to the arteries that lie under the collarbone (subclavian arteries) at about the 46th day of embryonic development is the prevailing theory.
The subclavian arteries normally supply blood to embryonic tissues that give rise to the chest wall and hand. Variations in the site and extent of the disruption may explain the range of signs and symptoms that occur in Poland syndrome. Abnormality of an embryonic structure called the apical ectodermal ridge, which helps direct early limb development, may also be involved in this disorder.
Diaphragmatic hernia is a defect or hole in the diaphragm that allows the abdominal contents to move into the chest cavity. Treatment is usually surgical.
Management has three components: interventions before delivery, timing and place of delivery, and therapy after delivery.
In some cases, fetal therapy is available for the underlying condition; this may help to limit the severity of pulmonary hypoplasia. In exceptional cases, fetal therapy may include fetal surgery.
A 1992 case report of a baby with a sacrococcygeal teratoma (SCT) reported that the SCT had obstructed the outlet of the urinary bladder causing the bladder to rupture in utero and fill the baby's abdomen with urine (a form of ascites). The outcome was good. The baby had normal kidneys and lungs, leading the authors to conclude that obstruction occurred late in the pregnancy and to suggest that the rupture may have protected the baby from the usual complications of such an obstruction. Subsequent to this report, use of a vesicoamniotic shunting procedure (VASP) has been attempted, with limited success.
Often, a baby with a high risk of pulmonary hypoplasia will have a planned delivery in a specialty hospital such as (in the United States) a tertiary referral hospital with a level 3 neonatal intensive-care unit. The baby may require immediate advanced resuscitation and therapy.
Early delivery may be required in order to rescue the fetus from an underlying condition that is causing pulmonary hypoplasia. However, pulmonary hypoplasia increases the risks associated with preterm birth, because once delivered the baby requires adequate lung capacity to sustain life. The decision whether to deliver early includes a careful assessment of the extent to which delaying delivery may increase or decrease the pulmonary hypoplasia. It is a choice between expectant management and active management. An example is congenital cystic adenomatoid malformation with hydrops; impending heart failure may require a preterm delivery. Severe oligohydramnios of early onset and long duration, as can occur with early preterm rupture of membranes, can cause increasingly severe PH; if delivery is postponed by many weeks, PH can become so severe that it results in neonatal death.
After delivery, most affected babies will require supplemental oxygen. Some severely affected babies may be saved with extracorporeal membrane oxygenation (ECMO). Not all specialty hospitals have ECMO, and ECMO is considered the therapy of last resort for pulmonary insufficiency. An alternative to ECMO is high-frequency oscillatory ventilation.
The mechanism of this condition is apparently controlled(or due to) the SLC2A10 gene. The molecular genetic pathogenesis finds that SLC2A10 encodes GLUT10(in nuclear membrane, or the endoplasmic reticulum, the later of which GLUT10 transports DHA into).Clinically speaking, according to one review, the condition of "tortuosity" is seen more with the advance of age.