Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
All people with "diabetes mellitus" are at riskthose with Type I diabetes and those with Type II diabetes. The longer a person has diabetes, the higher their risk of developing some ocular problem. Between 40 and 45 percent of Americans diagnosed with diabetes have some stage of diabetic retinopathy. After 20 years of diabetes, nearly all patients with Type I diabetes and >60% of patients with Type II diabetes have some degree of retinopathy; however, these statistics were published in 2002 using data from four years earlier, limiting the usefulness of the research. The subjects would have been diagnosed with diabetes in the late 1970s, before modern fast acting insulin and home glucose testing.
Prior studies had also assumed a clear glycemic threshold between people at high and low risk of diabetic retinopathy.
However, it has been shown that the widely accepted WHO and American Diabetes Association diagnostic cutoff for diabetes of a fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl) does not accurately identify diabetic retinopathy among patients. The cohort study included a multi-ethnic, cross-sectional adult population sample in the US, as well as two cross-sectional adult populations in Australia. For the US-based component of the study, the sensitivity was 34.7% and specificity was 86.6%. For patients at similar risk to those in this study (15.8% had diabetic retinopathy), this leads to a positive predictive value of 32.7% and negative predictive value of 87.6%.
Published rates vary between trials, the proposed explanation being differences in study methods and reporting of prevalence rather than incidence values.
During pregnancy, diabetic retinopathy may also be a problem for women with diabetes.
It is recommended that all pregnant women with diabetes have dilated eye examinations each trimester to protect their vision.
People with Down's syndrome, who have extra chromosome 21 material, almost never acquire diabetic retinopathy. This protection appears to be due to the elevated levels of endostatin, an anti-angiogenic protein, derived from collagen XVIII. The collagen XVIII gene is located on chromosome 21.
In the UK, screening for diabetic retinopathy is part of the standard of care for people with diabetes. After one normal screening in people with diabetes, further screening is recommended every two years. Teleophthalmology has been employed in these programs.
Studies have identified the following abnormalities as risk factors for the development of BRVO:
- hypertension
- cardiovascular disease
- obesity
- glaucoma
Diabetes mellitus was not a major independent risk factor.
The two most common causes of retinopathy include diabetic retinopathy and retinopathy of prematurity. Diabetic retinopathy affects about 5 million people and retinopathy of prematurity affect about 50,000 premature infants each year worldwide. Hypertensive retinopathy is the next most common cause affecting anywhere from 3 to 14% of all non-diabetic adults.
The causes of macular edema are numerous and different causes may be inter-related.
- It is commonly associated with diabetes. Chronic or uncontrolled diabetes type 2 can affect peripheral blood vessels including those of the retina which may leak fluid, blood and occasionally fats into the retina causing it to swell.
- Age-related macular degeneration may cause macular edema. As individuals age there may be a natural deterioration in the macula which can lead to the depositing of drusen under the retina sometimes with the formation of abnormal blood vessels.
- Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) also known as Irvine-Gass syndrome The surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. Less common today with modern lens replacement techniques.
- Chronic uveitis and intermediate uveitis can be a cause.
- Blockage of a vein in the retina can cause engorgement of the other retinal veins causing them to leak fluid under or into the retina. The blockage may be caused, among other things, by atherosclerosis, high blood pressure and glaucoma.
- A number of drugs can cause changes in the retina that can lead to macular edema. The effect of each drug is variable and some drugs have a lesser role in causation. The principal medication known to affect the retina are:- latanoprost, epinephrine, rosiglitazone, timolol and thiazolidinediones among others.
- A few congenital diseases are known to be associated with macular edema for example retinitis pigmentosa and retinoschisis.
Genetic mutations are rare causes of certain retinopathies and are usually X-linked including "NDP" family of genes causing Norrie Disease, FEVR, and Coats disease among others. There is emerging evidence that there may be a genetic predisposition in patients who develop retinopathy of prematurity and diabetic retinopathy. Trauma, especially to the head, and several diseases may cause Purtscher's retinopathy.
Cystoid macular edema (CME) involves fluid accumulation in the outer plexiform layer secondary to abnormal perifoveal retinal capillary permeability. The edema is termed "cystoid" as it appears cystic; however, lacking an epithelial coating, it is not truly cystic. The cause for CME can be remembered with the mnemonic "DEPRIVEN" (diabetes, epinepherine, pars planitis, retinitis pigmentosa, Irvine-Gass syndrome, venous occlusion, E2-prostaglandin analogues, nicotinic acid/niacin).
Diabetic macular edema (DME) is similarly caused by leaking macular capillaries. DME is the most common cause of visual loss in both proliferative, and non-proliferative diabetic retinopathy.
In general, BRVO has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final VA of 20/40 or better even without any treatment. With time the dramatic picture of an acute BRVO becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
A tear in the retina can allow fluids from the eye to leak in behind the retina, which causes retinal detachment. When this occurs, blood from the retinal blood vessels can bleed into the vitreous. Retinal tear accounts for 11.4–44% of vitreous hemorrhage cases.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
Although a variety of complex classification schemes are described in the literature, there are essentially two forms of macular telangiectasia: type 1 and type 2. Type 1 is typically unilateral and occurs almost exclusively in males after the age of 40.
Type 2 is mostly bilateral, occurs equally in males and females.
Signs of damage to the retina caused by hypertension include:
- Arteriolar changes, such as generalized arteriolar narrowing, focal arteriolar narrowing, arteriovenous nicking, changes in the arteriolar wall (arteriosclerosis) and abnormalities at points where arterioles and venules cross. Manifestations of these changes include "Copper wire arterioles" where the central light reflex occupies most of the width of the arteriole and "Silver wire arterioles" where the central light reflex occupies all of the width of the arteriole, and "arterio-venular (AV) nicking" or "AV nipping", due to venous constriction and banking.
- advanced retinopathy lesions, such as microaneurysms, blot hemorrhages and/or flame hemorrhages, ischemic changes (e.g. "cotton wool spots"), hard exudates and in severe cases swelling of the optic disc (optic disc edema), a ring of exudates around the retina called a "macular star" and visual acuity loss, typically due to macular involvement.
Mild signs of hypertensive retinopathy can be seen quite frequently in normal people (3–14% of adult individuals aged ≥40 years), even without hypertension. Hypertensive retinopathy is commonly considered a diagnostic feature of a hypertensive emergency although it is not invariably present.
There is an association between the grade of retinopathy and mortality. In a classic study in 1939 Keith and colleagues described the prognosis of people with differing severity of retinopathy. They showed 70% of those with grade 1 retinopathy were alive after 3 years whereas only 6% of those with grade 4 survived.The most widely used modern classification system bears their name. The role of retinopathy grading in risk stratification is debated, but it has been proposed that individuals with signs of hypertensive retinopathy signs, especially retinal hemorrhages, microaneurysms and cotton-wool spots, should be assessed carefully.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
CNV can occur rapidly in individuals with defects in Bruch's membrane, the innermost layer of the choroid. It is also associated with excessive amounts of Vascular endothelial growth factor (VEGF). As well as in wet macular degeneration, CNV can also occur frequently with the rare genetic disease pseudoxanthoma elasticum and rarely with the more common optic disc drusen. CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks.
This ocular pathology was first described by Iwanoff in 1865, and it has been shown to occur in about 7% of the population. It can occur more frequently in the older population with postmortem studies showing it in 2% of those aged 50 years and 20% in those aged 75 years.
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal neovascularization is a common cause of neovascular degenerative maculopathy (i.e. 'wet' macular degeneration) commonly exacerbated by extreme myopia, malignant myopic degeneration, or age-related developments.
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
Optic nerve damage is progressive and insidious. Eventually 75% of patients will develop some peripheral field defects. These can include nasal step defects, enlarged blind spots, arcuate scotomas, sectoral field loss and altitudinal defects. Clinical symptoms correlate to visibility of the drusen. Central vision loss is a rare complication of bleeding from peripapillar choroidal neovascular membranes. Anterior ischemic optic neuropathy (AION) is a potential complication.
Although intermediate uveitis can develop at any age, it primarily afflicts children and young adults. There is a bimodal distribution with one peak in the second decade and another peak in the third or fourth decade.
In the United States the proportion of patients with intermediate uveitis is estimated to be 4-8% of uveitis cases in referral centers. The National Institutes of Health reports a higher percentage (15%), which may indicate improved awareness or the nature of the uveitis referral clinic. In the pediatric population, intermediate uveitis can account for up to 25% of uveitis cases.
STGD1 is the most common form of inherited juvenile macular degeneration with a prevalence of approximately 1 in 10,000 births.