Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
Macular degeneration is a condition affecting the tissues lying under the retina, while a macular hole involves damage from within the eye, at the junction between the vitreous and the retina itself. There is no relationship between the two diseases. Depending upon the degree of attachment or traction between the vitreous and the retina, there may be risk of developing a macular hole in the other eye. In those cases where the vitreous has already become separated from the retinal surface, there is very little chance of developing a macular hole in the other eye. On the other hand, when the vitreous remains adherent and pulling on the macular region in both eyes, then there may be a greater risk of developing a hole in the second eye. In very rare instances, trauma or other conditions lead to the development of a macular hole. In the vast majority of cases, however, macular holes develop spontaneously. As a result, there is no known way to prevent their development through any nutritional or chemical means, nor is there any way to know who is at risk for developing a hole prior to its appearance in one or both eyes.
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
The vitreous (Latin for "glassy") humor is a gel which fills the eye behind the lens. Between it and the retina is the vitreous membrane. With age the vitreous humor changes, shrinking and developing pockets of liquefaction, similar to the way a gelatin dessert shrinks and detaches from the edge of a pan. At some stage the vitreous membrane may peel away from the retina. This is usually a sudden event, but it may also occur slowly over months.
Age and refractive error play a role in determining the onset of PVD in a healthy person. PVD is rare in emmetropic people under the age of 40 years, and increases with age to 86% in the 90s. Several studies have found a broad range of incidence of PVD, from 20% of autopsy cases to 57% in a more elderly population of patients (average age was 83.4 years).
People with myopia (nearsightedness) greater than 6 diopters are at higher risk of PVD at all ages.
Posterior vitreous detachment does not directly threaten vision. Even so, it is of increasing interest because the interaction between the vitreous body and the retina might play a decisive role in the development of major pathologic vitreoretinal conditions, such as epiretinal membrane.
PVD may also occur in cases of cataract surgery, within weeks or months of the surgery.
The vitreous membrane is more firmly attached to the retina anteriorly, at a structure called the vitreous base. The membrane does not normally detach from the vitreous base, although it can be detached with extreme trauma. However, the vitreous base may have an irregular posterior edge. When the edge is irregular, the forces of the vitreous membrane peeling off the retina can become concentrated at small posterior extensions of the vitreous base. Similarly, in some people with retinal lesions such as lattice retinal degeneration or chorio-retinal scars, the vitreous membrane may be abnormally adherent to the retina. If enough traction occurs the retina may tear at these points. If there are only small point tears, these can allow glial cells to enter the vitreous humor and proliferate to create a thin epiretinal membrane that distorts vision. In more severe cases, vitreous fluid may seep under the tear, separating the retina from the back of the eye, creating a retinal detachment. Trauma can be any form from a blunt force trauma to the face such as a boxer's punch or even in some cases has been known to be from extremely vigorous coughing or blowing of the nose.
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
Less common causes of vitreous hemorrhage make up 6.4–18% of cases, and include:
- Proliferative sickle cell retinopathy
- Macroaneurysm
- Age-related macular degeneration
- Terson syndrome
- Retinal neovascularization as a result of branch or central retinal vein occlusion
- Other – about 7 cases in 100,000 have no known cause attributed to them.
According to an American study nearly three in 10 children (28.4%) between the ages of five and 17 have astigmatism. A recent Brazilian study found that 34% of the students in one city were astigmatic. Regarding the prevalence in adults, a recent study in Bangladesh found that nearly 1 in 3 (32.4%) of those over the age of 30 had astigmatism.
A Polish study published in 2005 revealed "with-the-rule astigmatism" may lead to the onset of myopia.
A number of studies have found the prevalence of astigmatism increases with age.
A posterior vitreous detachment (PVD) is a condition of the eye in which the vitreous membrane separates from the retina.
It refers to the separation of the posterior hyaloid membrane from the retina anywhere posterior to the vitreous base (a 3–4 mm wide attachment to the ora serrata).
The condition is common for older adults; over 75% of those over the age of 65 develop it. Although less common among people in their 40s or 50s, the condition is not rare for those individuals. Some research has found that the condition is more common among women.
If the vitreous is firmly attached to the retina when it pulls away, it can tear the retina and create a macular hole. Also, once the vitreous has pulled away from the surface of the retina, some of the fibers can remain on the retinal surface and can contract. This increases tension on the retina and can lead to a macular hole. In either case, the fluid that has replaced the shrunken vitreous can then seep through the hole onto the macula, blurring and distorting central vision.
CSR is a fluid detachment of macula layers from their supporting tissue. This allows choroidal fluid to leak beneath the retina. The buildup of fluid seems to occur because of small breaks in the retinal pigment epithelium.
CSR is sometimes called "idiopathic CSR" which means that its cause is unknown. Nevertheless, stress appears to play an important role. An oft-cited but potentially inaccurate conclusion is that persons in stressful occupations, such as airplane pilots, have a higher incidence of CSR.
CSR has also been associated with cortisol and corticosteroids. Persons with CSR have higher levels of cortisol. Cortisol is a hormone secreted by the adrenal cortex which allows the body to deal with stress, which may explain the CSR-stress association. There is extensive evidence to the effect that corticosteroids (e.g. cortisone), commonly used to treat inflammations, allergies, skin conditions and even certain eye conditions, can trigger CSR, aggravate it and cause relapses. In a study documented by Indian Journal of Pharmacology, a young male was using Prednisolone and began to display subretinal fluid indicative of CSR. With the discontinuation of the steroid drop the subretinal fluid resolved and did not show any sign of recurrence. Thus indicating the steroid was the probable cause of the CSR. A study of 60 persons with Cushing's syndrome found CSR in 3 (5%). Cushing's syndrome is characterized by very high cortisol levels. Certain sympathomimetic drugs have also been associated with causing the disease.
Evidence has also implicated helicobacter pylori (see gastritis) as playing a role. It would appear that the presence of the bacteria is well correlated with visual acuity and other retinal findings following an attack.
Evidence also shows that sufferers of MPGN type II kidney disease can develop retinal abnormalities including CSR caused by deposits of the same material that originally damaged the glomerular basement membrane in the kidneys.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Traction caused by VMA is the underlying pathology of an eye disease called symptomatic VMA. There is evidence that symptomatic VMA can contribute to the development of several well-known eye disorders, such as macular hole and macular pucker, that can cause visual impairment, including blindness. It may also be associated with age-related macular degeneration (AMD), diabetic macular edema (DME), retinal vein occlusion, and diabetic retinopathy (DR).
The hyaloid artery, an artery running through the vitreous humour during the fetal stage of development, regresses in the third trimester of pregnancy. Its disintegration can sometimes leave cell matter.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Uveitis refers to a large group of disorders which cause inflammation within the eye. A similar condition, iritis, usually refers to an inflammation involving the front structures of the eye associated with pain, redness, and sensitivity to light. In this discussion, uveitis could have these symptoms, but mainly consists of inflammation involving the back structures of the eye (the retina, choroid, and optic nerve). Inflammatory debris liberated into the vitreous leads to the visualization of floaters. If this liberation continues, the vision may become substantially hazy and blurred.
There are numerous conditions leading to uveitis, and many have floaters and blurred vision as predominant symptoms: sarcoidosis, toxoplasmosis chorioretinitis, ocular histoplasmosis, multifocal choroiditis, pars planitis, endophalmitis, syphilis, candidiasis, viral uveitis, Vogt-Koyanagi-Harada syndrome, and HIV related uveitis.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
Patients with retinal tears may experience floaters if red blood cells are released from leaky blood vessels, and those with uveitis or vitritis, as in toxoplasmosis, may experience multiple floaters and decreased vision due to the accumulation of white blood cells in the vitreous humour.
Other causes for floaters include cystoid macular edema and asteroid hyalosis. The latter is an anomaly of the vitreous humour, whereby calcium clumps attach themselves to the collagen network. The bodies that are formed in this way move slightly with eye movement, but then return to their fixed position.
The causes of macular edema are numerous and different causes may be inter-related.
- It is commonly associated with diabetes. Chronic or uncontrolled diabetes type 2 can affect peripheral blood vessels including those of the retina which may leak fluid, blood and occasionally fats into the retina causing it to swell.
- Age-related macular degeneration may cause macular edema. As individuals age there may be a natural deterioration in the macula which can lead to the depositing of drusen under the retina sometimes with the formation of abnormal blood vessels.
- Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) also known as Irvine-Gass syndrome The surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. Less common today with modern lens replacement techniques.
- Chronic uveitis and intermediate uveitis can be a cause.
- Blockage of a vein in the retina can cause engorgement of the other retinal veins causing them to leak fluid under or into the retina. The blockage may be caused, among other things, by atherosclerosis, high blood pressure and glaucoma.
- A number of drugs can cause changes in the retina that can lead to macular edema. The effect of each drug is variable and some drugs have a lesser role in causation. The principal medication known to affect the retina are:- latanoprost, epinephrine, rosiglitazone, timolol and thiazolidinediones among others.
- A few congenital diseases are known to be associated with macular edema for example retinitis pigmentosa and retinoschisis.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
Barrage laser is at times done prophylactically around a hole or tear associated with lattice degeneration in an eye at risk of developing a retinal detachment. It is not known if surgical interventions such as laser photocoagulation or cryotherapy is effective in preventing retinal detachment in patients with lattice degeneration or "asymptomatic" retinal detachment. Laser photocoagulation has been shown to reduce risks of retinal detachment in "symptomatic" lattice degeneration. There are documented cases wherein retina detached from areas which were otherwise healthy despite being treated previously with laser.