Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Severe disease is more common in babies and young children, and in contrast to many other infections, it is more common in children who are relatively well nourished. Other risk factors for severe disease include female sex, high body mass index, and viral load. While each serotype can cause the full spectrum of disease, virus strain is a risk factor. Infection with one serotype is thought to produce lifelong immunity to that type, but only short-term protection against the other three. The risk of severe disease from secondary infection increases if someone previously exposed to serotype DENV-1 contracts serotype DENV-2 or DENV-3, or if someone previously exposed to DENV-3 acquires DENV-2. Dengue can be life-threatening in people with chronic diseases such as diabetes and asthma.
Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin, CTLA4, TGFβ, DC-SIGN, PLCE1, and particular forms of human leukocyte antigen from gene variations of HLA-B. A common genetic abnormality, especially in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk. Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.
Five families of RNA viruses have been recognised as being able to cause hemorrhagic fevers.
- The family "Arenaviridae" include the viruses responsible for Lassa fever (Lassa virus), Lujo virus, Argentine (Junin virus), Bolivian (Machupo virus), Brazilian (Sabiá virus), Chapare hemorrhagic fever (Chapare virus) and Venezuelan (Guanarito virus) hemorrhagic fevers.
- The family "Bunyaviridae" include the members of the "Hantavirus" genus that cause hemorrhagic fever with renal syndrome (HFRS), the Crimean-Congo hemorrhagic fever (CCHF) virus from the "Nairovirus" genus, Garissa virus and Ilesha virus from the "Orthobunyavirus" and the Rift Valley fever (RVF) virus from the "Phlebovirus" genus.
- The family "Filoviridae" include Ebola virus and Marburg virus.
- The family "Flaviviridae" include dengue, yellow fever, and two viruses in the tick-borne encephalitis group that cause VHF: Omsk hemorrhagic fever virus and Kyasanur Forest disease virus.
- In September 2012 scientists writing in the journal PLOS Pathogens reported the isolation of a member of the "Rhabdoviridae" responsible for 2 fatal and 2 non-fatal cases of hemorrhagic fever in the Bas-Congo district of the Democratic Republic of Congo. The non-fatal cases occurred in healthcare workers involved in the treatment of the other two, suggesting the possibility of person-to-person transmission. This virus appears to be unrelated to previously known Rhabdoviruses.
The pathogen that caused the cocoliztli epidemics in Mexico of 1545 and 1576 is still unknown.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
Prevention depends on control of and protection from the bites of the mosquito that transmits it. The World Health Organization recommends an Integrated Vector Control program consisting of five elements:
1. Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened;
2. Collaboration between the health and other sectors (public and private);
3. An integrated approach to disease control to maximize use of resources;
4. Evidence-based decision making to ensure any interventions are targeted appropriately; and
5. Capacity-building to ensure an adequate response to the local situation.
The primary method of controlling "A. aegypti" is by eliminating its habitats. This is done by getting rid of open sources of water, or if this is not possible, by adding insecticides or biological control agents to these areas. Generalized spraying with organophosphate or pyrethroid insecticides, while sometimes done, is not thought to be effective. Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effects from insecticides and greater logistical difficulties with control agents. People can prevent mosquito bites by wearing clothing that fully covers the skin, using mosquito netting while resting, and/or the application of insect repellent (DEET being the most effective). However, these methods appear not to be sufficiently effective, as the frequency of outbreaks appears to be increasing in some areas, probably due to urbanization increasing the habitat of "A. aegypti". The range of the disease appears to be expanding possibly due to climate change.
Risk factors independently associated with developing a clinical infection with WNV include a suppressed immune system and a patient history of organ transplantation. For neuroinvasive disease the additional risk factors include older age (>50+), male sex, hypertension, and diabetes mellitus.
A genetic factor also appears to increase susceptibility to West Nile disease. A mutation of the gene "CCR5" gives some protection against HIV but leads to more serious complications of WNV infection. Carriers of two mutated copies of "CCR5" made up 4.0 to 4.5% of a sample of West Nile disease sufferers, while the incidence of the gene in the general population is only 1.0%.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
The mortality rate of chikungunya is slightly less than 1 in 1000. Those over the age of 65, neonates, and those with underlying chronic medical problems are most likely to have severe complications. Neonates are vulnerable as it is possible to vertically transmit chikungunya from mother to infant during delivery, which results in high rates of morbidity, as infants lack fully developed immune systems. The likelihood of prolonged symptoms or chronic joint pain is increased with increased age and prior rheumatological disease.
Prevention strategies include reducing the breeding of midges through source reduction (removal and modification of breeding sites) and reducing contact between midges and people. This can be accomplished by reducing the number of natural and artificial water-filled habitats and encourage the midge larvae to grow.
Oropouche fever is present in epidemics so the chances of one contracting it after being exposed to areas of midgets or mosquitoes is rare.
While the general prognosis is favorable, current studies indicate that West Nile Fever can often be more severe than previously recognized, with studies of various recent outbreaks indicating that it may take as long as 60–90 days to recover. People with milder WNF are just as likely as those with more severe manifestations of neuroinvasive disease to experience multiple long term (>1+ years) somatic complaints such as tremor, and dysfunction in motor skills and executive functions. People with milder illness are just as likely as people with more severe illness to experience adverse outcomes. Recovery is marked by a long convalescence with fatigue. One study found that neuroinvasive WNV infection was associated with an increased risk for subsequent kidney disease.
Observations during recent epidemics have suggested chikungunya may cause long-term symptoms following acute infection. This condition has been termed chronic chikungunya virus-induced arthralgia. Long-term symptoms are not an entirely new observation; long-term arthritis was observed following an outbreak in 1979. Common predictors of prolonged symptoms are advanced age and prior rheumatological disease.
During the La Reunion outbreak in 2006, more than 50% of subjects over the age of 45 reported long-term musculoskeletal pain with up to 60% of people reporting prolonged painful joints three years following initial infection. A study of imported cases in France reported that 59% of people still suffered from arthralgia two years after acute infection. Following a local epidemic of chikungunya in Italy, 66% of people reported muscle pains, joint pains, or asthenia at one year after acute infection.
Currently, the cause of these chronic symptoms is not fully known. Markers of autoimmune or rheumatoid disease have not been found in people reporting chronic symptoms. However, some evidence from humans and animal models suggests chikungunya may be able to establish chronic infections within the host. Viral antigen was detected in a muscle biopsy of a person suffering a recurrent episode of disease three months after initial onset. Additionally, viral antigen and viral RNA were found in macrophages in the synovial joint of a person experiencing a relapse of musculoskeletal disease 18 months after initial infection. Several animal models have also suggested chikungunya virus may establish persistent infections. In a mouse model, viral RNA was detected specifically in joint-associated tissue for at least 16 weeks after inoculation, and was associated with chronic synovitis. Similarly, another study reported detection of a viral reporter gene in joint tissue of mice for weeks after inoculation. In a nonhuman primate model, chikungunya virus was found to persist in the spleen for at least six weeks.
Yellow fever is common in tropical and subtropical areas of South America and Africa. Worldwide, about 600 million people live in endemic areas. The WHO estimates 200,000 cases of disease and 30,000 deaths a year occur; the number of officially reported cases is far lower.
One study has focused on identifying OROV through the use of RNA extraction from reverse transcription-polymerase chain reaction. This study revealed that OROV caused central nervous system infections in three patients. The three patients all had meningoencephalitis and also showed signs of clear lympho-monocytic cellular pattern in CSF, high protein, and normal to slightly decreased glucose levels indicating they had viral infections. Two of the patients already had underlying infections that can effect the CNS and immune system and in particular one of these patients has HIV/AIDS and the third patient has neurocysticercosis. Two patients were infected with OROV developed meningitis and it was theorized that this is due to them being immunocompromised. Through this it was revealed that it's possible that the invasion of the central nervous system by the oropouche virus can be performed by a pervious blood-brain barrier damage.
Cases of African tick bite fever have been more frequently reported in the literature among international travelers. Data examining rates in local populations are limited. Among locals who live in endemic areas, exposure at a young age and mild symptoms or lack of symptoms, as well as decreased access to diagnostic tools, may lead to decreased diagnosis. In Zimbabwe, where "R. africae" is endemic, one study reported an estimated yearly incidence of 60-80 cases per 10,000 patients.
Looking at published data over the past 35 years, close to 200 confirmed cases of African tick bite fever in international travelers have been reported. The majority (~80%) of these cases occurred in travelers returning from South Africa.
Vaccination is recommended for those traveling to affected areas, because non-native people tend to develop more severe illness when infected. Protection begins by the 10th day after vaccine administration in 95% of people, and had been reported to last for at least 10 years. WHO now states that a single dose of vaccination is sufficient to confer lifelong immunity against yellow fever disease." The attenuated live vaccine stem 17D was developed in 1937 by Max Theiler. The World Health Organization (WHO) recommends routine vaccinations for people living in affected areas between the 9th and 12th month after birth.
Up to one in four people experience fever, aches, and local soreness and redness at the site of injection. In rare cases (less than one in 200,000 to 300,000), the vaccination can cause yellow fever vaccine–associated viscerotropic disease, which is fatal in 60% of cases. It is probably due to the genetic morphology of the immune system. Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease, which can lead to meningoencephalitis and is fatal in less than 5% of cases.
The Yellow Fever Initiative, launched by WHO in 2006, vaccinated more than 105 million people in 14 countries in West Africa. No outbreaks were reported during 2015. The campaign was supported by the GAVI Alliance, and governmental organizations in Europe and Africa. According to the WHO, mass vaccination cannot eliminate yellow fever because of the vast number of infected mosquitoes in urban areas of the target countries, but it will significantly reduce the number of people infected.
In March 2017, WHO launched a vaccination campaign in Brazil with 3.5 million doses from an emergency stockpile. In March 2017 the WHO recommended vaccination for travellers to certain parts of Brazil.
"Rickettsia africae" is a gram-negative, obligate intracellular, pleomorphic bacterium. It belongs to the "Rickettsia" genus, which includes many bacterial species that are transmitted to humans by arthropods.
The pathogenic agent is found everywhere except New Zealand. The bacterium is extremely sustainable and virulent: a single organism is able to cause an infection. The common source of infection is inhalation of contaminated dust, contact with contaminated milk, meat, or wool, and particularly birthing products. Ticks can transfer the pathogenic agent to other animals. Transfer between humans seems extremely rare and has so far been described in very few cases.
Some studies have shown more men to be affected than women, which may be attributed to different employment rates in typical professions.
“At risk” occupations include:
- Veterinary personnel
- Stockyard workers
- Farmers
- Sheep shearers
- Animal transporters
- Laboratory workers handling potentially infected veterinary samples or visiting abattoirs
- People who cull and process kangaroos
- Hide (tannery) workers
Rocky Mountain spotted fever can be a very severe illness and patients often require hospitalization. Because "R. rickettsii" infects the cells lining blood vessels throughout the body, severe manifestations of this disease may involve the respiratory system, central nervous system, gastrointestinal system, or kidneys.
Long-term health problems following acute Rocky Mountain spotted fever infection include partial paralysis of the lower extremities, gangrene requiring amputation of fingers, toes, or arms or legs, hearing loss, loss of bowel or bladder control, movement disorders, and language disorders. These complications are most frequent in persons recovering from severe, life-threatening disease, often following lengthy hospitalizations
The disease has a fatality rate of 3-10%, and it affects 400-500 people annually.
West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, specifically from the genus Flavivirus which also contain the Zika virus, dengue virus, and the yellow fever virus. The West Nile virus is primarily transmitted through mosquitoes, mostly by the Culex species. However, ticks have been found to carry the virus. The primary hosts of WNV are birds, so that the virus remains within a "bird-mosquito-bird" transmission cycle.
There are a variety of animals thought to be reservoir hosts for the disease, including porcupines, rats, squirrels, mice and shrews. The vector for disease transmission is "Haemaphysalis spinigera", a forest tick. Humans contract infection from the bite of nymphs of the tick.
Pappataci fever is prevalent in the subtropical zone of the Eastern Hemisphere between 20°N and 45°N, particularly in Southern Europe, North Africa, the Balkans, Eastern Mediterranean, Iraq, Iran, Pakistan, Afghanistan and India.
The disease is transmitted by the bites of phlebotomine sandflies of the Genus "Phlebotomus", in particular, "Phlebotomus papatasi", "Phlebotomus perniciosus" and "Phlebotomus perfiliewi". The sandfly becomes infected when biting an infected human in the period between 48 hours before the onset of fever and 24 hours after the end of the fever, and remains infected for its lifetime. Besides this «horizontal» virus transmission from man to sandfly, the virus can be transmitted in insects transovarially, from an infected female sandfly to its offspring.
Pappataci fever is seldom recognised in endemic populations because it is mixed with other febrile illnesses of childhood, but it is more well-known among immigrants and military personnel from non-endemic regions.
Tick-borne relapsing fever is found primarily in Africa, Spain, Saudi Arabia, Asia, and certain areas of Canada and the western United States. Other relapsing infections are acquired from other "Borrelia" species, which can be spread from rodents, and serve as a reservoir for the infection, by a tick vector.
- "Borrelia crocidurae" – occurs in Egypt, Mali, Senegal, Tunisia; vectors – "Carios erraticus", "Ornithodoros sonrai"; animal host – shrew ("Crocidura stampflii")
- "Borrelia duttoni", transmitted by the soft-bodied African tick "Ornithodoros moubata", is responsible for the relapsing fever found in central, eastern, and southern Africa.
- "Borrelia hermsii"
- "Borrelia hispanica"
- "Borrelia miyamotoi"
- "Borrelia parkeri"
- "Borrelia turicatae"
"B. hermsii" and "B. recurrentis" cause very similar diseases. However, one or two relapses are common with the disease associated with "B. hermsii", which is also the most common cause of relapsing disease in the United States. (Three or four relapses are common with the disease caused by "B. recurrentis", which has longer febrile and afebrile intervals and a longer incubation period than "B. hermsii".)
It is estimated that seven to ten million people are infected by leptospirosis annually. One million cases of severe leptospirosis occur annually, with 58,900 deaths. Annual rates of infection vary from 0.02 per 100,000 in temperate climates to 10 to 100 per 100,000 in tropical climates. This leads to a lower number of registered cases than likely exists.
The number of new cases of leptospirosis is difficult to estimate since many cases of the disease go unreported. There are many reasons for this, but the biggest issue is separating the disease from other similar conditions. Laboratory testing is lacking in many areas.
In context of global epidemiology, the socioeconomic status of many of the world’s population is closely tied to malnutrition; subsequent lack of micronutrients may lead to increased risk of infection and death due to leptospirosis infection. Micronutrients such as iron, calcium, and magnesium represent important areas of future research.
Outbreaks that occurred after the 1940's have happened mostly in the late summer seasons, which happens to be the driest part of the year. The people at the highest risk for leptospirosis are young people whose age ranges from 5-16 years old, and can also range to young adults.
The amount of cases increase during the rainy season in the tropics and during the late summer or early fall in Western countries. This happens because leptospires survive best in fresh water, damp alkaline soil, vegetation, and mud with temperatures higher that 22° C. This also leads to increased risk of exposure to populations during flood conditions, and leptospire concentrations to peak in isolated pools during drought. There is no evidence of leptospirosis having any effect on sexual and age-related differences. However, a major risk factor for development of the disease is occupational exposure, a disproportionate number of working-aged males are affected. There have been reported outbreaks where more than 40% of people are younger than 15. “Active surveillance measures have detected leptospire antibodies in as many as 30% of children in some urban American populations.” Potential reasons for such cases include children playing with suspected vectors such as dogs or indiscriminate contact with water.
The virus’s transmission cycle in the wild is similar to the continuous sylvatic cycle of yellow fever and is believed to involve wild primates (monkeys) as the reservoir and the tree-canopy-dwelling "Haemagogus" species mosquito as the vector. Human infections are strongly associated with exposure to humid tropical forest environments. Chikungunya virus is closely related, producing a nearly indistinguishable, highly debilitating arthralgic disease. On February 19, 2011, a Portuguese-language news source reported on a recent survey which revealed Mayaro virus activity in Manaus, Amazonas State, Brazil. The survey studied blood samples from 600 residents of Manaus who had experienced a high fever; Mayaro virus was identified in 33 cases. Four of the cases experienced mild hemorrhagic (bleeding) symptoms, which had not previously been described in Mayaro virus disease. The report stated that this outbreak is the first detected in a metropolitan setting, and expressed concern that the disease might be adapting to urban species of mosquito vectors, which would make it a risk for spreading within the country. A study published in 1991 demonstrated that a colonized strain of Brazilian "Aedes albopictus" was capable of acquiring MAYV from infected hamsters and subsequently transmitting it and a study published in October 2011 demonstrated that "Aedes aegypti" can transmit MAYV, supporting the possibility of wider transmission of Mayaro virus disease in urban settings.
There are only between 500 and 2500 cases of Rocky Mountain spotted fever reported in the United States per year, and in only about 20% can the tick be found.
Host factors associated with severe or fatal Rocky Mountain spotted fever include advanced age, male sex, African or Caribbean background, chronic alcohol abuse, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Deficiency of G6PD is a genetic condition affecting about 12 percent of the Afro-American male population. Deficiency in this enzyme is associated with a high proportion of severe cases of Rocky Mountain spotted fever. This is a rare clinical complication that is often fatal within five days of the onset of the disease.
In the early 1940´s, outbreaks were described in the Mexican states of Sinaloa, Sonora, Durango, and Coahuila driven by dogs and Rhipicephalus sanguineus sensu lato, the brown dog tick. Over the ensuing 100 years case fatality rates were 30%–80%. In 2015, there was an abrupt rise in Sonora cases with 80 fatal cases. From 2003 to 2016, cases increased to 1394 with 247 deaths.