Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An average clinical profile from published studies shows that the median onset age for HDLS patients is 44.3 years with a mean disease duration of 5.8 years and mean age of death at 53.2 years. As of 2012, there have been around 15 cases identified with at least 11 sporadic cases of HDLS. HDLS cases have been located in Germany, Norway, Sweden, and the United States, showing an international distribution focusing between Northern Europe and the United States.
Through the study of numerous kindred, it was found that the disease did not occur among just males or females, but rather was evenly distributed indicative of an autosomal rather than a sex-linked genetic disorder. It was also observed that the HDLS cases did not skip generations as it would occur with a recessive inheritance, and as such has been labeled autosomal dominant.
While moderate to severe traumatic brain injury is a risk for ALS, it is unclear if mild traumatic brain injury increases rates.
In 1994 the National Institute for Occupational Safety and Health (NIOSH) reported a nonsignificant increase in nervous system disorders due to four cases of ALS among National Football League (NFL) players. It was unclear if this was due to chance or not. Another study from 2012 also found a possible increase in ALS in NFL football players. An older study did not find an increased risk among high school football players. A 2007 review found an increased risk among soccer players. ALS may also occur more often among the US military veterans however the reason is unknown. This may be due to head injury.
After the 2012 report was released, some NFL players involved in the legal settlement with the NFL complained that the NFL, which initially agreed to pay $765 million, was not doing enough to help players. The judge in the case concurred, and the NFL then agreed to pay an unlimited amount of damages for players found to have ALS, Parkinson's disease, Alzheimer's disease and dementia.
About 5–10% of cases are directly inherited from a person's parents. Overall, first-degree relatives of an individual with ALS have a 1% risk of developing ALS.
A defect on chromosome 21, which codes for superoxide dismutase, is associated with about 20% of familial cases of ALS, or about 2% of ALS cases overall. This mutation is believed to be transmitted in an autosomal dominant manner, and has over a hundred different forms of mutation. The most common ALS-causing mutation is a mutant "SOD1" gene, seen in North America; this is characterized by an exceptionally rapid progression from onset to death. The most common mutation found in Scandinavian countries, D90A-SOD1, is more slowly progressive than typical ALS, and people with this form of the disorder survive for an average of 11 years.
In 2011, a genetic abnormality known as a hexanucleotide repeat was found in a region called C9orf72, which is associated with ALS combined with frontotemporal dementia ALS-FTD, and accounts for some 6% of cases of ALS among white Europeans.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
Exercise in middle age may reduce the risk of Parkinson's disease later in life. Caffeine also appears protective with a greater decrease in risk occurring with a larger intake of caffeinated beverages such as coffee. People who smoke cigarettes or use smokeless tobacco are less likely than non-smokers to develop PD, and the more they have used tobacco, the less likely they are to develop PD. It is not known what underlies this effect. Tobacco use may actually protect against PD, or it may be that an unknown factor both increases the risk of PD and causes an aversion to tobacco or makes it easier to quit using tobacco.
Antioxidants, such as vitamins C and E, have been proposed to protect against the disease, but results of studies have been contradictory and no positive effect has been proven. The results regarding fat and fatty acids have been contradictory, with various studies reporting protective effects, risk-increasing effects or no effects. There have been preliminary indications that the use of anti-inflammatory drugs and calcium channel blockers may be protective. A 2010 meta-analysis found that nonsteroidal anti-inflammatory drugs (apart from aspirin), have been associated with at least a 15 percent (higher in long-term and regular users) reduction of incidence of the development of Parkinson's disease.
The early stages of Alzheimer's disease are difficult to diagnose. A definitive diagnosis is usually made once cognitive impairment compromises daily living activities, although the person may still be living independently. The symptoms will progress from mild cognitive problems, such as memory loss through increasing stages of cognitive and non-cognitive disturbances, eliminating any possibility of independent living, especially in the late stages of the disease.
Life expectancy of people with AD is less. Following diagnosis it typically ranges from three to ten years.
Fewer than 3% of people live more than fourteen years. Disease features significantly associated with reduced survival are an increased severity of cognitive impairment, decreased functional level, history of falls, and disturbances in the neurological examination. Other coincident diseases such as heart problems, diabetes or history of alcohol abuse are also related with shortened survival. While the earlier the age at onset the higher the total survival years, life expectancy is particularly reduced when compared to the healthy population among those who are younger. Men have a less favourable survival prognosis than women.
Pneumonia and dehydration are the most frequent immediate causes of death brought by AD, while cancer is a less frequent cause of death than in the general population.
GSS is one of a small number of diseases that are caused by prions, a class of pathogenic proteins highly resistant to proteases.
A change in codon 102 from proline to leucine has been found in the prion protein gene ("PRNP", on chromosome 20) of most affected individuals. Therefore, it appears this genetic change is usually required for the development of the disease.
Two main measures are used in epidemiological studies: incidence and prevalence. Incidence is the number of new cases per unit of person–time at risk (usually number of new cases per thousand person–years); while prevalence is the total number of cases of the disease in the population at any given time.
Regarding incidence, cohort longitudinal studies (studies where a disease-free population is followed over the years) provide rates between 10 and 15 per thousand person–years for all dementias and 5–8 for AD, which means that half of new dementia cases each year are AD. Advancing age is a primary risk factor for the disease and incidence rates are not equal for all ages: every five years after the age of 65, the risk of acquiring the disease approximately doubles, increasing from 3 to as much as 69 per thousand person years. There are also sex differences in the incidence rates, women having a higher risk of developing AD particularly in the population older than 85. The risk of dying from Alzheimer's disease is 26% higher among the non-Hispanic white population than among the non-Hispanic black population, whereas the Hispanic population has a 30% lower risk than the non-Hispanic white population.
Prevalence of AD in populations is dependent upon different factors including incidence and survival. Since the incidence of AD increases with age, it is particularly important to include the mean age of the population of interest. In the United States, Alzheimer prevalence was estimated to be 1.6% in 2000 both overall and in the 65–74 age group, with the rate increasing to 19% in the 75–84 group and to 42% in the greater than 84 group. Prevalence rates in less developed regions are lower. The World Health Organization estimated that in 2005, 0.379% of people worldwide had dementia, and that the prevalence would increase to 0.441% in 2015 and to 0.556% in 2030. Other studies have reached similar conclusions. Another study estimated that in 2006, 0.40% of the world population (range 0.17–0.89%; absolute number , range ) were afflicted by AD, and that the prevalence rate would triple and the absolute number would quadruple by 2050.
There is currently no effective treatment or cure for PSP, although some of the symptoms can respond to nonspecific measures. The average age at symptoms onset is 63 and survival from onset averages 7 years with a wide variance. Pneumonia is a frequent cause of death.
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive disorder of the nervous system that is characterized by a loss of intellectual functioning (dementia) and seizures. At first, affected individuals may have difficulty sustaining attention and concentrating. Their judgment, insight, and memory become impaired as the condition progresses. Over time, they lose the ability to perform the activities of daily living, and most people with this condition eventually require comprehensive care.
The signs and symptoms of familial encephalopathy with neuroserpin inclusion bodies vary in their severity and age of onset. In severe cases, the condition causes seizures and episodes of sudden, involuntary muscle jerking or twitching (myoclonus) in addition to dementia. These signs can appear as early as a person's teens. Less severe cases are characterized by a progressive decline in intellectual functioning beginning in a person's forties or fifties.
Mutations in the "SERPINI1" gene cause familial encephalopathy with neuroserpin inclusion bodies. The "SERPINI1" gene provides instructions for making a protein called neuroserpin. This protein is found in nerve cells, where it plays a role in the development and function of the nervous system. Neuroserpin helps control the growth of nerve cells and their connections with one another, which suggests that this protein may be important for learning and memory. Mutations in the gene result in the production of an abnormally shaped, unstable version of neuroserpin. Abnormal neuroserpin proteins can attach to one another and form clumps (called neuroserpin inclusion bodies or Collins bodies) within nerve cells. These clumps disrupt the cells' normal functioning and ultimately lead to cell death. Progressive dementia results from this gradual loss of nerve cells in certain parts of the brain. Researchers believe that a buildup of related, potentially toxic substances in nerve cells may also contribute to the signs and symptoms of this condition.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In many cases, an affected person has a parent with the condition.
HDLS falls under the category of brain white matter diseases called leukoencephalopathies that are characterized by some degree of white matter dysfunction. HDLS has white matter lesions with abnormalities in myelin sheath around axons, where the causative influences are being continually explored based upon recent genetic findings. Studies by Sundal and colleagues from Sweden showed that a risk allele in Caucasians may be causative because cases identified have thus far been among large Caucasian families.
Frontotemporal lobar degeneration (FTLD) is a pathological process that occurs in frontotemporal dementia. It is characterized by atrophy in the frontal lobe and temporal lobe of the brain, with sparing of the parietal and occipital lobes.
Common proteinopathies that are found in FTLD include the accumulation of Tau proteins and TARDBPs. Mutations in the C9orf72 gene have been established as a major genetic contribution of FTLD, although defects in the GRN and MAPT genes are also associated with it.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
Currently, an estimated 60 to 75% of diagnosed dementias are of the Alzheimer's and mixed (Alzheimer's and vascular dementia) type, 10 to 15% are Lewy body type, with the remaining types being of an entire spectrum of dementias, including frontotemporal lobar degeneration (Pick's disease), alcoholic dementia, pure vascular dementia, etc. Dementia with Lewy bodies tends to be under-recognized. Dementia with Lewy bodies is slightly more prevalent in men than women. DLB increases in prevalence with age; the mean age at presentation is 75 years.
Dementia with Lewy bodies affects about one million individuals in the United States.
Exposure to pesticides and a history of head injury have each been linked with Parkinson disease (PD), but the risks are modest. Never having smoked cigarettes, and never drinking caffeinated beverages, are also associated with small increases in risk of developing PD.
Low concentrations of urate in the blood serum is associated with an increased risk of PD.
Symptoms of frontotemporal dementia progress at a rapid, steady rate. Patients suffering from the disease can survive between 2–15 years. Eventually patients will need 24-hour care for daily function.
CSF leaks are a known cause of reversible frontotemporal dementia.
Currently, there is no cure for FTD. Treatments are available to manage the behavioral symptoms. Disinhibition and compulsive behaviors can be controlled by selective serotonin reuptake inhibitors (SSRIs). Although Alzheimer's and FTD share certain symptoms, they cannot be treated with the same pharmacological agents because the cholinergic systems are not affected in FTD.
Because FTD often occurs in younger people (i.e. in their 40's or 50's), it can severely affect families. Patients often still have children living in the home. Financially, it can be devastating as the disease strikes at the time of life that often includes the top wage-earning years.
Personality changes in individuals with FTD are involuntary. Managing the disease is unique to each individual, as different patients with FTD will display different symptoms, sometimes of rebellious nature.
Genetic testing is available for symptomatic individuals and asymptomatic relatives.
Familial Alzheimer's disease (FAD) or early onset familial Alzheimer's disease (EOFAD) is an uncommon form of Alzheimer's disease that usually strikes earlier in life, defined as before the age of 65 (usually between 50 and 65 years of age, but can be as early as 15) and is inherited in an autosomal dominant fashion, identified by genetics and other characteristics such as the age of onset. It accounts for approximately half the cases of early-onset Alzheimer's disease. Familial AD requires the patient to have at least one first degree relative with a history of AD. Non-familial cases of AD are referred to as "sporadic" AD, where genetic risk factors are minor or unclear.
While early-onset familial AD is estimated to account for only 3.5% of total Alzheimer's disease, it has presented a useful model in studying various aspects of the disorder. Currently, the early-onset familial AD gene mutations guide the vast majority of animal model based therapeutic discovery and development for AD.
There are many other medical and neurological conditions in which dementia only occurs late in the illness. For example, a proportion of patients with Parkinson's disease develop dementia, though widely varying figures are quoted for this proportion. When dementia occurs in Parkinson's disease, the underlying cause may be dementia with Lewy bodies or Alzheimer's disease, or both. Cognitive impairment also occurs in the Parkinson-plus syndromes of progressive supranuclear palsy and corticobasal degeneration (and the same underlying pathology may cause the clinical syndromes of frontotemporal lobar degeneration). Although the acute porphyrias may cause episodes of confusion and psychiatric disturbance, dementia is a rare feature of these rare diseases.
Aside from those mentioned above, inherited conditions that can cause dementia (alongside other symptoms) include:
- Alexander disease
- Canavan disease
- Cerebrotendinous xanthomatosis
- Dentatorubral-pallidoluysian atrophy
- Epilepsy
- Fatal familial insomnia
- Fragile X-associated tremor/ataxia syndrome
- Glutaric aciduria type 1
- Krabbe's disease
- Maple syrup urine disease
- Niemann–Pick disease type C
- Neuronal ceroid lipofuscinosis
- Neuroacanthocytosis
- Organic acidemias
- Pelizaeus–Merzbacher disease
- Sanfilippo syndrome type B
- Spinocerebellar ataxia type 2
- Urea cycle disorders
There are 3 main histological subtypes found at post-mortem:
- FTLD-tau is characterised by tau positive inclusions often referred to as Pick-bodies. Examples of FTLD-tau include; Pick's disease, corticobasal degeneration, progressive supranuclear palsy.
- FTLD-TDP (or FTLD-U ) is characterised by ubiquitin and TDP-43 positive, tau negative, FUS negative inclusions. The pathological histology of this subtype is so diverse it is subdivided into four subtypes based on the detailed histological findings:
Two physicians independently categorized the various forms of TDP-43 associated disorders. Both classifications were considered equally valid by the medical community, but the physicians in question have jointly proposed a compromise classification to avoid confusion.
- FTLD-FUS; which is characterised by FUS positive cytoplasmic inclusions, intra nuclear inclusions, and neuritic threads. All of which are present in the cortex, medulla, hippocampus, and motor cells of the spinal cord and XIIth cranial nerve.
Dementia lacking distinctive histology (DLDH) is a rare and controversial entity. New analyses have allowed many cases previously described as DLDH to be reclassified into one of the positively defined subgroups.
Lytico-bodig disease, sometimes spelled Lytigo-bodig, is the name of a disease in the language of Chamorro. It is referred to by neuroscientists as amyotrophic lateral sclerosis-parkinsonism-dementia (ALS-PDC), a term coined by Asao Hirano and colleagues in 1961. It is a neurodegenerative disease of uncertain etiology that exists in the United States territory of Guam.
The disease resembles Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease, and Alzheimer's. First reports of the disease surfaced in three death certificates on Guam in 1904. These death certificates made some mention of paralysis. The frequency of cases grew amongst the Chamorro people on Guam until it was the leading cause of adult death between 1945 and 1956. The incidence rate was 200 per 100,000 per year and it was 100 times more prevalent than in the rest of the world.
Neurologist Oliver Sacks detailed this disease in his book "The Island of the Colorblind"
. Sacks and Paul Alan Cox subsequently wrote that a local species of flying fox, which is now extinct due to overhunting, had been feeding on cycads and concentrating β-methylamino--alanine (BMAA), a known neurotoxin, in its body fat. The hypothesis suggests that consumption of the fruit bat by the Chamorro exposed them to BMAA, contributing to or causing their condition. Decline in consumption of the bats has been linked to a decline in the incidence of the disease.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
Prognosis is poor, however, current analysis suggests that those associated with thymoma, benign or malignant, show a less favorable prognosis (CASPR2 Ab positive).