Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acalvaria usually occurs in less than 1 of every 100,000 births. By way of epidemiological data, it is thought that females are more prone to have this defect. Currently, acalvaria is not thought to have much of a risk of recurrence.
Though the children affected with CLSD will have problems throughout life, the treatment for this disease thus far is symptomatic. However, prognosis is good; at the time of the most recently published articles, identified children were still alive at over 4 years of age.
Mutant proteins still maintain some residual activity, allowing for the release of some collagen, but still form an extremely distended endoplasmic reticulum.
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
Cranio–lenticulo–sutural dysplasia (CLSD, or Boyadjiev-Jabs syndrome) is a neonatal/infancy disease caused by a disorder in the 14th chromosome. It is an autosomal recessive disorder, meaning that both recessive genes must be inherited from each parent in order for the disease to manifest itself. The disease causes a significant dilation of the endoplasmic reticulum in fibroblasts of the host with CLSD. Due to the distension of the endoplasmic reticulum, export of proteins (such as collagen) from the cell is disrupted.
The production of SEC23A protein is involved in the pathway of exporting collagen (the COPII pathway), but a missense mutation causes and underproduction of SEC23A which inhibits the pathway, affecting collagen secretion. This decrease in collagen secretion can lead to the bone defects that are also characteristic of the disease, such as skeletal dysplasia and under-ossification. Decreased collagen in CLSD-affected individuals contributes to improper bone formation, because collagen is a major protein in the extracellular matrix and contributes to its proper mineralization in bones. It has also been hypothesized that there are other defects in the genetic code besides SEC23A that contribute to the disorder.
Usually babies with this malformation do not survive past birth. However, there have been cases of survival. As of 2004, there were only two reported living cases. Of these two, one was severely cognitively impaired and physically disabled. The status of the other was unreported. If the fetus progresses to full term, there is the risk that it will have head trauma from the pressure applied to the head while being delivered. A few other cases of acalvaria have been reported, which did not progress to birth. In addition to the lack skull cap, there were brain malformations present in each case, and all of the pregnancies were terminated either electively or the fetuses were spontaneously aborted.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
The age range of patients with OPLL is from 32 to 81 years (mean = 53), with a male predominance. Prevalence is higher in those of Japanese or Asian ancestry (2-3.5%) and rarer in other racial groups (0.16%). Schizophrenia patients in Japan may have as high as 20% incidence.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
Ischiopatellar dysplasia is often considered a familial condition. Ischiopatellar dysplasia has been identified on region 5.6 cM on chromosome 17q22. Mutations in the TBX4 (T-box protein 4) gene have been found to cause ischiopatellar dysplasia due to the essential role TBX4 plays in lower limb development since TBX4 is a transcription factor.
This is a rare condition with an incidence estimated to be less than 1 in a million live births. About 100 cases have been reported worldwide. The bulk of cases are sporadic but familial forms with autosomal dominant transmission have also been described.
Overall, the prognosis for patients with NOMID is not good, though many (80%) live into adulthood, and a few appear to do relatively well. They are at risk for leukemia, infections, and some develop deposits of protein aggregated called amyloid, which can lead to kidney failure and other problems. The neurologic problems are most troubling. The finding that other diseases are related and a better understanding of where the disease comes from may lead to more effective treatments.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
Prognosis is poor. Previous research suggested a 100% mortality rate for those with acrania. This disease is rare, occurring in 1 in 20,000 live births.
In order to better manage an acrania diagnosis, early detection is of extreme importance so that actions may be taken to help the mother and child. Families may choose either to terminate the pregnancy, or to carry the child to term. Acrania may cause a fetus to spontaneously abort before reaching term.
Infants with achondrogenesis, type 2 have short arms and legs, a small chest with short ribs, and underdeveloped lungs. Achondrogenesis, type 2 is a subtype of collagenopathy, types II and XI. This condition is also associated with a lack of bone formation (ossification) in the spine and pelvis. Typical facial features include a prominent forehead, a small chin, and, in some cases, an opening in the roof of the mouth (a cleft palate). The abdomen is enlarged, and affected infants often have a condition called hydrops fetalis in which excess fluid builds up in the body before birth. The skull bones may be soft, but they often appear normal on X-ray images. In contrast, bones in the spine (vertebrae) and pelvis do not harden.
Achondrogenesis, type 2 and hypochondrogenesis (a similar skeletal disorder) together affect 1 in 40,000 to 60,000 births. Achondrogenesis, type 2 is one of several skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues). Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones and other connective tissues from developing properly.
Achondrogenesis, type 2 is considered an autosomal dominant disorder because one copy of the altered gene in each cell is sufficient to cause the condition. The disorder is not passed on to the next generation, however, because affected individuals hardly survive past puberty.
Opsismodysplasia is a type of skeletal dysplasia (a bone disease that interferes with bone development) first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek "opsismos" ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by (short or undersized bones), particularly of the hands and feet, delay of ossification (bone cell formation), platyspondyly (flattened vertebrae), irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.
It was first identified in 1972 as a novel rare genetic disorder sharing similar symptoms with chondrodysplasia punctata. Multiple forms of chondrodysplasia punctata share symptoms consistent with KS including abnormal cartilage calcification, forceful respiration, brachytelephalangism, hypotonia, psychomotor delay, and conductive deafness, yet peripheral pulmonary stenosis remains unique to KS.
No chromosomal abnormalities are reported in affected individuals, suggesting that familial consanguinity relates to the autosomal recessive mode of inheritance. Also, despite largely abnormal calcification of regions including the larynx, tracheobronchial tree, nose, pinna (anatomy), and epiglottis, patients exhibit normal serum calcium and phosphate levels.
Most patients suffer from only mild symptoms. Symptoms typically last approximately 13 months. Of patients without myelopathy at initial presentation, only 29% of them will develop myelopathy within 30 years.
As of 2017, approximately 800 cases of FOP have been confirmed worldwide making FOP one of the rarest diseases known. The estimated incidence of FOP is 0.5 cases per million people and affects all races.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
Several studies have reported that life expectancy appears to be normal for people with CCD.
Mandibuloacral dysplasia is a rare autosomal recessive syndrome characterized by mandibular hypoplasia, delayed cranial suture closure, dysplastic clavicles, abbreviated and club-shaped terminal phalanges, acroosteolysis, atrophy of the skin of the hands and feet, and typical facial changes.
Types include: