Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
Chronic stress can aggravate allergic conditions. This has been attributed to a T helper 2 (TH2)-predominant response driven by suppression of interleukin 12 by both the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. Stress management in highly susceptible individuals may improve symptoms.
An example of a tuberculosis (TB) infection that comes under control: "M. tuberculosis" cells are engulfed by macrophages after being identified as foreign, but due to an immuno-escape mechanism peculiar to mycobacteria, TB bacteria are able to block the fusion of their enclosing phagosome with lysosomes which would destroy the bacteria. Thereby TB can continue to replicate within macrophages. After several weeks, the immune system somehow [mechanism as yet unexplained] ramps up and, on stimulation with IFN-gamma, the macrophages become capable of killing "M. tuberculosis" by forming phagolysosomes and nitric oxide radicals. The hyper-activated macrophages secrete TNF-α which recruits multiple monocytes to the site of infection. These cells differentiate into epithelioid cells which wall off the infected cells, but results in significant inflammation and local damage.
Some other clinical examples:
- Temporal arteritis
- Leprosy
- Coeliac disease
- Graft-versus-host disease
- Chronic transplant rejection
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Allergic diseases are strongly familial: identical twins are likely to have the same allergic diseases about 70% of the time; the same allergy occurs about 40% of the time in non-identical twins. Allergic parents are more likely to have allergic children, and those children's allergies are likely to be more severe than those in children of non-allergic parents. Some allergies, however, are not consistent along genealogies; parents who are allergic to peanuts may have children who are allergic to ragweed. It seems that the likelihood of developing allergies is inherited and related to an irregularity in the immune system, but the specific allergen is not.
The risk of allergic sensitization and the development of allergies varies with age, with young children most at risk. Several studies have shown that IgE levels are highest in childhood and fall rapidly between the ages of 10 and 30 years. The peak prevalence of hay fever is highest in children and young adults and the incidence of asthma is highest in children under 10.
Overall, boys have a higher risk of developing allergies than girls, although for some diseases, namely asthma in young adults, females are more likely to be affected. These differences between the sexes tend to decrease in adulthood.
Ethnicity may play a role in some allergies; however, racial factors have been difficult to separate from environmental influences and changes due to migration. It has been suggested that different genetic loci are responsible for asthma, to be specific, in people of European, Hispanic, Asian, and African origins.
Allergic inflammation is an important pathophysiological feature of several disabilities or medical conditions including allergic asthma, atopic dermatitis, allergic rhinitis and several ocular allergic diseases. Allergic reactions may generally be divided into two components; the early phase reaction, and the late phase reaction. While the contribution to the development of symptoms from each of the phases varies greatly between diseases, both are usually present and provide us a framework for understanding allergic disease.
The early phase of the allergic reaction typically occurs within minutes, or even seconds, following allergen exposure and is also commonly referred to as the immediate allergic reaction or as a Type I allergic reaction. The reaction is caused by the release of histamine and mast cell granule proteins by a process called degranulation, as well as the production of leukotrienes, prostaglandins and cytokines, by mast cells following the cross-linking of allergen specific IgE molecules bound to mast cell FcεRI receptors. These mediators affect nerve cells causing itching, smooth muscle cells causing contraction (leading to the airway narrowing seen in allergic asthma), goblet cells causing mucus production, and endothelial cells causing vasodilatation and edema.
The late phase of a Type 1 reaction (which develops 8–12 hours and is mediated by mast cells) should not be confused with delayed hypersensitivity Type IV allergic reaction (which takes 48–72 hours to develop and is mediated by T cells). The products of the early phase reaction include chemokines and molecules that act on endothelial cells and cause them to express Intercellular adhesion molecule (such as vascular cell adhesion molecule and selectins), which together result in the recruitment and activation of leukocytes from the blood into the site of the allergic reaction. Typically, the infiltrating cells observed in allergic reactions contain a high proportion of lymphocytes, and especially, of eosinophils. The recruited eosinophils will degranulate releasing a number of cytotoxic molecules (including Major Basic Protein and eosinophil peroxidase) as well as produce a number of cytokines such as IL-5. The recruited T-cells are typically of the Th2 variety and the cytokines they produce lead to further recruitment of mast cells and eosinophils, and in plasma cell isotype switching to IgE which will bind to the mast cell FcεRI receptors and prime the individual for further allergic responses.
Atopic reactions are caused by localized hypersensitivity reaction to an allergen. Atopy appears to show a strong hereditary component. One study concludes that the risk of developing atopic dermatitis (3%) or atopy in general (7%) "increases by a factor of two with each first-degree family member already suffering from atopy". As well, maternal stress and perinatal programming is increasingly understood as a root cause of atopy, finding that "...trauma may be a particularly robust potentiator of the cascade of biological events that increase vulnerability to atopy and may help explain the increased risk found in low-income urban populations.”
Environmental factors are also thought to play a role in the development of atopy, and the 'hygiene hypothesis' is one of the models that may explain the steep rise in the incidence of atopic diseases, though this hypothesis is incomplete and in some cases, contradictory to findings. This hypothesis proposes that excess 'cleanliness' in an infant's or child's environment can lead to a decline in the number of infectious stimuli that are necessary for the proper development of the immune system. The decrease in exposure to infectious stimuli may result in an imbalance between the infectious-response ("protective") elements and the allergic-response ("false alarm") elements within the immune system.
Some studies also suggest that the maternal diet during pregnancy may be a causal factor in atopic diseases (including asthma) in offspring, suggesting that consumption of antioxidants, certain lipids, and/or a Mediterranean diet may help to prevent atopic diseases.
The multicenter PARSIFAL study in 2006, involving 6630 children age 5 to 13 in 5 European countries, suggested that reduced use of antibiotics and antipyretics is associated with a reduced risk of allergic disease in children.
The Arthus reaction involves the in situ formation of antigen/antibody complexes after the intradermal injection of an antigen. If the animal/patient was previously sensitized (has circulating antibody), an Arthus reaction occurs. Typical of most mechanisms of the type III hypersensitivity, Arthus manifests as local vasculitis due to deposition of IgG-based immune complexes in dermal blood vessels. Activation of complement primarily results in cleavage of soluble complement proteins forming C5a and C3a, which activate recruitment of PMNs and local mast cell degranulation (requiring the binding of the immune complex onto FcγRIII), resulting in an inflammatory response. Further aggregation of immune complex-related processes induce a local fibrinoid necrosis with ischemia-aggravating thrombosis in the tissue vessel walls. The end result is a localized area of redness and induration that typically lasts a day or so.
Arthus reactions have been infrequently reported after vaccinations containing diphtheria and tetanus toxoid. The CDC's description:
Arthus reactions (type III hypersensitivity reactions) are rarely reported after vaccination and can occur after tetanus toxoid–containing or diphtheria toxoid–containing vaccines. An Arthus reaction is a local vasculitis associated with deposition of immune complexes and activation of complement. Immune complexes form in the setting of high local concentration of vaccine antigens and high circulating antibody concentration. Arthus reactions are characterized by severe pain, swelling, induration, edema, hemorrhage, and occasionally by necrosis. These symptoms and signs usually occur 4–12 hours after vaccination. ACIP has recommended that persons who experienced an Arthus reaction after a dose of tetanus toxoid–containing vaccine should not receive Td more frequently than every 10 years, even for tetanus prophylaxis as part of wound management.
Aspirin-induced asthma, also termed Samter's triad, Samter's syndrome, aspirin-exacerbated respiratory disease (AERD), and recently by an appointed task force of the European Academy of Allergy and Clinical Immunology/World Allergy Organization (EAACI/WAO) Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD). is a medical condition initially defined as consisting of three key features: asthma, respiratory symptoms exacerbated by aspirin, and nasal/ethmoidal polyposis; however, the syndrome's symptoms are exacerbated by a large variety of other nonsteroidal anti-inflammatory drugs (NSAIDs) besides aspirin. The symptoms of respiratory reactions in this syndrome are hypersensitivity reactions to NSAIDs rather than the typically described true allergic reactions that trigger other common allergen-induced asthma, rhinitis, or hives. The NSAID-induced reactions do not appear to involve the common mediators of true allergic reactions, immunoglobulin E or T cells. Rather, AERD is a type of NSAID-induced hypersensitivity syndrome. EAACI/WHO classifies the syndrome as one of 5 types of NSAID hypersensitivity or NSAID hypersensitivity reactions.
Hypersensitivity (also called hypersensitivity reaction or intolerance) is a set of undesirable reactions produced by the normal immune system, including allergies and autoimmunity. They are usually referred to as an over- reaction of the immune system and these reactions may be damaging, uncomfortable, or occasionally fatal. Hypersensitivity reactions require a pre-sensitized (immune) state of the host. They are classified in four groups after the proposal of P. G. H. Gell and Robin Coombs in 1963.
The Arthus reaction was discovered by Nicolas Maurice Arthus in 1903. Arthus repeatedly injected horse serum subcutaneously into rabbits. After four injections, he found that there was edema and that the serum was absorbed slowly. Further injections eventually led to gangrene.
Type 4 hypersensitivity is often called delayed type hypersensitivity as the reaction takes several days to develop. Unlike the other types, it is not antibody-mediated but rather is a type of cell-mediated response.
CD4+ T1 helper T cells recognize antigen in a complex with the MHC class II major histocompatibility complex on the surface of antigen-presenting cells. These can be macrophages that secrete IL-12, which stimulates the proliferation of further CD4+ T1 cells. CD4+ T cells secrete IL-2 and interferon gamma, inducing the further release of other T1 cytokines, thus mediating the immune response. Activated CD8+ T cells destroy target cells on contact, whereas activated macrophages produce hydrolytic enzymes and, on presentation with certain intracellular pathogens, transform into multinucleated giant cells.
Some clinical examples:
Other examples are:
- Subacute bacterial endocarditis
- Symptoms of malaria
In adults, the prevalence of IgE sensitization to allergens from house dust mite and cat, but not grass, seem to decrease over time as people age. However, the biological reasons for these changes are not fully understood.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
Allergic conjunctivitis occurs more frequently among those with allergic conditions, with the symptoms having a seasonal correlation.
Allergic conjunctivitis is a frequent condition as it is estimated to affect 20 percent of the population on an annual basis and approximately one-half of these people have a personal or family history of atopy.
Giant papillary conjunctivitis accounts for 0.5–1.0% of eye disease in most countries.
The Allergic Alсоhоl from the original on 30 April 2012. Retrieved 2010-04-08.
This is an additional type that is sometimes (especially in the UK) used as a distinction from Type 2.
Instead of binding to cell surfaces, the antibodies recognise and bind to the cell surface receptors, which either prevents the intended ligand binding with the receptor or mimics the effects of the ligand, thus impairing cell signaling.
Some clinical examples:
- Graves' disease
- Myasthenia gravis
The use of Type 5 is rare. These conditions are more frequently classified as Type 2, though sometimes they are specifically segregated into their own subcategory of Type 2.
Type III hypersensitivity occurs when there is an excess of antigen, leading to small immune complexes being formed that fix complement and are not cleared from the circulation. It involves soluble antigens that are not bound to cell surfaces (as opposed to those in type II hypersensitivity). When these antigens bind antibodies, immune complexes of different sizes form. Large complexes can be cleared by macrophages but macrophages have difficulty in the disposal of small immune complexes. These immune complexes insert themselves into small blood vessels, joints, and glomeruli, causing symptoms. Unlike the free variant, a small immune complex bound to sites of deposition (like blood vessel walls) are far more capable of interacting with complement; these medium-sized complexes, formed in the slight excess of antigen, are viewed as being highly pathogenic.
Such depositions in tissues often induce an inflammatory response, and can cause damage wherever they precipitate. The cause of damage is as a result of the action of cleaved complement anaphylotoxins C3a and C5a, which, respectively, mediate the induction of granule release from mast cells (from which histamine can cause urticaria), and recruitment of inflammatory cells into the tissue (mainly those with lysosomal action, leading to tissue damage through frustrated phagocytosis by PMNs and macrophages).
The reaction can take hours, days, or even weeks to develop, depending on whether or not there is immunological memory of the precipitating antigen. Typically, clinical features emerge a week following initial antigen challenge, when the deposited immune complexes can precipitate an inflammatory response. Because of the nature of the antibody aggregation, tissues that are associated with blood filtration at considerable osmotic and hydrostatic gradient (e.g. sites of urinary and synovial fluid formation, kidney glomeruli and joint tissues respectively) bear the brunt of the damage. Hence, vasculitis, glomerulonephritis and arthritis are commonly associated conditions as a result of type III hypersensitivity responses.
As observed under methods of histopathology, acute necrotizing vasculitis within the affected tissues is observed concomitant to neutrophilic infiltration, along with notable eosinophilic deposition (fibrinoid necrosis). Often, immunofluorescence microscopy can be used to visualize the immune complexes. Skin response to a hypersensitivity of this type is referred to as an Arthus reaction, and is characterized by local erythema and some induration. Platelet aggregation, especially in microvasculature, can cause localized clot formation, leading to blotchy hemorrhages. This typifies the response to injection of foreign antigen sufficient to lead to the condition of serum sickness.
Nickel allergy results in a skin response (rash) after the skin comes in direct and sustained contact with any item which releases a large amount of free nickel from its surface. The skin reaction can occur at the site of contact, or sometimes spread beyond to the rest of the body. Cutaneous exposure can cause localized erythematous, pruritic, vesicular, and scaly patches. Ingestion of nickel may cause a systemic reaction, that will affect a larger skin surface. Examples of systemic reactions can include hand dermatitis, baboon syndrome, or generalized eczematous reactions.
Estimates of latex sensitivity in the general population range from 0.8% to 8.2%.
The cause of allergic conjunctivitis is an allergic reaction of the body's immune system to an allergen. Allergic conjunctivitis is common in people who have other signs of allergic disease such as hay fever, asthma and eczema.
Among the most common allergens that cause conjunctivitis are:
- Pollen from trees, grass and ragweed
- Animal skin and secretions such as saliva
- Perfumes
- Cosmetics
- Skin medicines
- Air pollution
- Smoke
- Dust mites
- Balsam of Peru (used in food and drink for flavoring, in perfumes and toiletries for fragrance, and in medicine and pharmaceutical items for healing properties)
- Eye drops
Most cases of seasonal conjunctivitis are due to pollen and occur in the hay fever season, grass pollens in early summer and various other pollens and moulds may cause symptoms later in the summer.
Allergies are caused by an oversensitive immune system, leading to a misdirected immune response. The immune system normally protects the body against harmful substances such as bacteria and viruses. Allergy occurs when the immune system reacts to substances (allergens) that are generally harmless and in most people do not cause an immune response.
- Animal hair and dander
- cockroach calyx
- dust mite excretion
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
Within the workplace, individuals may be exposed to significant amounts of nickel, airborne from the combustion of fossil fuels, or from contact with tools that are nickel-plated. Historically, workplaces where prolonged contact with soluble nickel has been high, have shown high risks for allergic contact nickel dermatitis. For example, nickel dermatitis was common in the past among nickel platers. Due to improved industrial and personal hygiene practices, however, over the past several decades, reports of nickel sensitivity in workplaces, such as the electroplating industry, have been sparse. In the workplace, exposure reduction includes personal protection equipment and other risk management measures.
In type II hypersensitivity (also tissue-specific, or cytotoxic hypersensitivity) the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. The antigens recognized in this way may either be intrinsic ("self" antigen, innately part of the patient's cells) or extrinsic (adsorbed onto the cells during exposure to some foreign antigen, possibly as part of infection with a pathogen). These cells are recognized by macrophages or dendritic cells, which act as antigen-presenting cells. This causes a B cell response, wherein antibodies are produced against the foreign antigen.
An example of type II hypersensitivity is the ABO blood incompatibility where the red blood cells have different antigens, causing them to be recognized as different; B cell proliferation will take place and antibodies to the foreign blood type are produced. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation to eliminate cells presenting foreign antigens. That is, mediators of acute inflammation are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day.
Type II reactions can affect healthy cells. Examples include red blood cells in autoimmune hemolytic anemia and acetylcholine receptors in myasthenia gravis.
Another example of type II hypersensitivity reaction is Goodpasture's syndrome where the basement membrane (containing collagen type IV) in the lung and kidney is attacked by one's own antibodies.
Another form of type II hypersensitivity is called antibody-dependent cell-mediated cytotoxicity (ADCC). Here, cells exhibiting the foreign antigen are tagged with antibodies (IgG or IgM). These tagged cells are then recognised by natural killer cells (NK) and macrophages (recognised via IgG bound (via the Fc region) to the effector cell surface receptor, CD16 (FcγRIII)), which in turn kill these tagged cells.